飞秒激光辐照下碳化硅热响应与熔化阈值模拟

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:jiangyingzhou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
单晶碳化硅(SiC)具有宽带隙、高击穿电压、高饱和电子漂移速度等优良半导体特性。此外,SiC是Ⅳ-Ⅳ族二元化合物半导体,具有很强的离子共价键,结合能稳定,具有优越的力学、化学性能,这些优异的性能使得碳化硅材料加工变得极为困难。激光加工技术作为一种新兴加工技术逐渐受到大家的广泛关注,尤其是飞秒激光加工技术,它具有加工精度高、热效应小、可实现三维微加工等诸多优势。本文主要围绕飞秒激光辐照SiC展开,重点研究六方碳化硅(6H-SiC)在飞秒激光辐照下热响应现象与熔化阈值模拟。主要研究成果如下:研究发现SiC在超短脉冲激光辐照下载流子温度分布随时间呈现出两个峰值,这是由于激光辐照过程中俄歇加热和激光直接加热在不同阶段占主导作用引起的,并且激光参数同样对双峰结构的调控起着重要作用。模拟了采用波长780 nm、脉宽50 fs、激光通量分别为0.5 J/cm~2与1.0 J/cm~2激光辐照时,不同机制下载流子温度随时间变化的曲线。发现双峰结构中第二个峰值的出现并不仅仅单独依赖于自由载流子吸收过程亦或是俄歇复合过程,而是两种机制共同作用的结果,它们的影响程度与激光通量有关,激光通量改变,载流子双峰形成起主导作用的物理机制也随之发生变化。波长对于双峰结构的调控源于激光辐照过程光学吸收系数有较大差别,激光脉宽与通量则影响辐照过程中激光强度大小。与激光强度相比,吸收系数对于双峰结构的影响更为显著。明确SiC载流子浓度、载流子温度与晶格温度随时间的变化规律是确定SiC熔化阈值的前提条件。本文介绍了超短脉冲激光辐照下SiC熔融阈值的条件,熔化过程包括热熔化和非热熔化,给出了非热熔化阈值的定义。激光辐照熔化过程中非热熔过程与热熔过程相对能量贡献占比是判定熔化形式的依据。如果能量通量足够大,辐照过程中非热熔过程能量贡献占比远大于热熔过程,熔化主要是非热熔的,否则是热熔的。详细探讨了阈值对波长和脉冲宽度的依赖关系以及不同激光通量下两种熔化类型在整个熔化过程中能量贡献占比。研究过程中以单脉冲辐照为基准,重点研究SiC被辐照区域开始熔化时熔化阈值Fm1,为此分别模拟了780、400和248 nm三种激光波长在50~200 fs脉宽范围的熔化阈值曲线,以研究熔化阈值与激光参数的关系。结果表明,相同激光脉宽下激光波长越短熔化阈值越小。当以晶格温度(只考虑热熔过程)为熔化判断依据时计算出的熔化阈值略大于考虑热熔和非热熔过程计算出的熔化阈值。该工作为理解激光热响应过程提供了参考,并且对超短脉冲激光在碳化硅材料改性、切割与微加工等领域的应用提供了一种可能性。
其他文献
极化激元束缚在界面,具有突破衍射极限的特性,这使得亚波长尺度下的光调制成为新的可能。随着散射型近场扫描显微镜的纳米级空间分辨成像功能的优化升级,可以轻松的在实空间对极化激元测试和成像,故极化激元成为了微纳光子学的热点研究领域,在光与物质强耦合、增强型共振腔、光波导等领域均有大量物理机制和器件应用研究。近年来,块状范德华晶体剥离得到二维薄膜在技术上已经可以实现,科学研究人员在二维薄膜上发现存在极化激
学位
21世纪以来,随着微波技术的不断发展,其在通讯、雷达、生物医疗等领域的应用也越来越广泛,然而,大量微波电子器件的使用在给我们的生活带来便利的同时,也带来了日渐加剧的电磁污染问题。因此,微波波段的电磁屏蔽已经成为了一个热门的研究领域。并且随着科技的不断进步,人们对于电磁屏蔽材料的要求也越来越高,不仅需要有很好的屏蔽性能,还需要同时具备轻质、柔韧、超薄等复合功能。我们迫切的需要找到一种满足以上条件的新
学位
超导混频技术是实现太赫兹波段观测的一项重要技术,而超导SIS结是超导混频器的核心部件,因此制备出高质量的超导SIS结对于太赫兹频段天文观测至关重要。本论文依托于LCT亚毫米波望远镜项目,针对230、345 GHz频段,对Nb薄膜、Al Ox薄膜以及Nb/Al Ox/Nb超导SIS隧道结进行了制备和性能研究。具体研究内容和研究结果如下:1、研究磁控溅射中溅射气压与溅射功率对于Nb薄膜晶体结构、表面形
学位
非晶氧化物半导体(AOS)材料以其高载流子迁移率、宽光学带隙和低温处理工艺等独特优势,作为薄膜晶体管(TFTs)的沟道层材料受到了广泛关注。性能优异的AOS一般基于In2O3材料,但In元素资源短缺且具有毒性。Sn O2材料资源相对丰富,且由于Sn4+的[Kr]4d105s~0与In3+相似,有利于电子输运,同样可以获得较高的载流子迁移率。本论文以溶液法Sn Ga O TFTs为研究对象,通过改变
学位
锆钛酸铅系(PZT)铁电材料因其优异的铁电,介电及压电性能在微机电系统等方面有着重要应用,如何进一步提升当前核心压电薄膜的压电与机电耦合性能长期以来一直是国际上关注的焦点。以铌锰酸铅-锆酸铅-钛酸铅(PMN-PZ-PT)为代表的新一代弛豫铁电材料引起了人们的广泛关注,在准同型相界成分(MPB)附近,兼有压电与机电耦合性能和更好的温度稳定性,在传感器,换能器及驱动器等领域有重要的应用前景。本文主要对
学位
InN超导的出现意味着Ⅲ-Ⅴ族半导体材料可以横跨超导、微电子、光电子等诸多领域。将InN超导特性与第Ⅲ主族的氮化物半导体结合并实现片上集成有着非常重要的应用前景。由于InN同时兼具超导体和半导体的两种性质,一个直接的应用就是超导单光子探测器。本文主要研究了InN不同线宽(5/10/50μm)在变温变磁、低温变光的微电流条件下的输运测试,研究线宽对InN超导性质的影响;以及研究InN不同线宽对不同波
学位
随着世界人口数量不断增加及工业的持续发展,新能源开发和环境保护已成为全球性的热门话题。开发可持续的绿色清洁能源装置和技术对人类社会的可持续发展具有长远意义。可充电离子电池作为一种新型储能装置,已广泛应用于手机、电脑、电动汽车、大型电网系统等领域。其中,作为离子电池重要组成部分的负极材料在电池充放电过程中起着关键性作用。然而,传统负极材料表现出容量低、吸附活性位点少、扩散势垒较高等问题,现已无法满足
学位
太赫兹(Terahertz,THz,1 THz=4.1 me V)波具有光子能量低、空间分辨率高和光谱信息丰富等优异特性,在无线高速通信、生物样品检测以及亚毫米波天文观测等领域具有独特优势和广阔应用前景。太赫兹技术的进一步发展需要对其实现有效操控。混合模式结构具有介质纤维损耗小和表面等离子激元模式限制作用强的综合优势,很适合研制高性能的太赫兹波导器件。以三维狄拉克半金属(3D Dirac semi
学位
MXenes材料,即过渡金属碳化物和氮化物,是一种新型二维材料,具有可调谐的物理化学性质,如:导电率高、离子传输路径短、比表面积大、稳定性强等,这些优异的性能引发了极大的关注。研究发现,MXenes材料可以通过吸附不同的化学基团,实现表面功能化,改变其电子结构特性。目前发现一些经过表面功能化的MXenes存在拓扑绝缘体材料。拓扑绝缘体的体材料是绝缘态,但边缘具有导电性。这一特殊的边缘态在时间反演对
学位
由于太赫兹波段包含了宇宙微波背景辐射后近一半的宇宙光子能量,并且相关的探测技术正处于快速发展阶段,因此对该波段的研究和探测已成为近些年天文学领域的前沿方向。目前,基于低温超导器件的相干探测技术是最灵敏的探测手段,其核心器件为超导SIS混频器,其中超导层和绝缘层是决定混频器性能的关键因素,因此实现超导层和绝缘层的高质量生长至关重要。本论文选择超导转变温度高、稳定性良好的Nb作为超导SIS隧道结的超导
学位