论文部分内容阅读
陆地碳酸盐风化形成的大气CO2净汇是4.77亿t C a-1,随着土地利用的改变及降雨的增加,还可能增加9.8%17.1%。但是,人类活动带来的硝酸和硫酸及其对碳酸盐的溶解在碳汇计算中需加以扣除。我国平均氮肥输入量巨大,它能促进土壤有机质的分解或累积,促进土壤CO2的产生及排放,对岩溶碳循环有间接的调控作用。当氮肥的施用量大于植物吸收量时,过量的氮肥输入会发生硝化作用产生硝酸,通过对碳酸盐的溶蚀直接参与岩溶碳循环。但是这种间接或直接作用有多大,对岩溶碳汇的影响如何,富钙偏碱的岩溶土壤对氮肥输入如何响应,氮在流域土壤-岩溶表层带-地下水系统的迁移与转化及其对岩溶碳循环的影响等问题还有待进一步研究。因此,本研究设置了一系列不同施氮浓度的盆栽模拟实验,结合自然流域地下水的观测,开展了氮对石灰土碳循环强度的影响及其源汇效应、石灰土-地下水中氮对岩溶碳循环的影响、流域尺度氮迁移转化及其参与岩溶碳循环的机制研究,发现以下主要结论:1.不同施氮浓度的盆栽模拟实验研究发现,氮肥对土壤CO2的提高作用为10.5%30.6%,试片溶蚀速率提高了1.83.6倍。土壤呼吸速率也随施肥量增加而提高,平均值为26.9748.95 mgC m-2h-1,比不施肥的提高了7%60%。施肥导致土壤碳源汇量均增加,随施氮量的增加,汇/源比从0.44%上升到0.91%。2.石灰土存在碳酸溶解碳酸钙、硝酸溶解碳酸钙和阳离子交换三种酸缓冲机制。较低浓度的氮肥(100 kgN ha-1a-1)主要通过增加土壤CO2的浓度间接参与岩溶碳循环,硝化产酸全部由阳离子交换缓冲,土壤碳酸钙溶蚀全部来自土壤CO2。在施肥浓度为250700 kgN ha-1a-1时,45%的H+直接参与碳酸钙的溶蚀,55%的H+被阳离子交换缓冲。渗漏液δ13CDIC受控于土壤CO2分压而不是硝化作用的强弱。3.漓江流域地下水无机碳和钙、镁浓度随NO3-浓度的增加而增加,三者来源于碳酸溶蚀碳酸盐、硝酸溶蚀碳酸盐和阳离子交换三个过程。在人为输入的NO3-<0.20.3 mmol L-1时,以植物充分吸收氮素,刺激微生物呼吸和有机质矿化,增加土壤CO2溶蚀碳酸盐为主;NO3->0.3 mmol L-1,以硝酸溶蚀或阳离子交换为主。地下河HCO3-浓度与δ13CDIC均受CO2分压控制。4.同位素端元法计算地下河硝酸溶蚀碳酸盐的平均值为4.34%,水化学平衡法计算结果为8.83%,这4.49%的差值可能全部为阳离子交换造成。研究结果有助于完善岩溶动力系统碳氮耦合循环理论,为准确计算氮肥施用对岩溶碳循环和岩溶碳汇的影响提供数据支撑,同时为合理利用氮肥减少氮污染提供科学支持。