基于神经网络的图像超分辨率重建和修复研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:same786
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网和大数据的发展,图像日益丰富并成为人们社交生活的一部分。在通讯、监控、遥感、医疗等领域,图像都是重中之重。可由于硬件领域摩尔定律限制、拍摄条件和环境的变动,得到和保存的图像往往存在问题。一是图像有噪声、模糊,二是纸质图像老旧后会出现褪色、划横,三是图像尺寸可能太小。为解决上述问题,近年来基于神经网络的图像超分辨率重建和修复技术层出不穷。图像超分是指从一幅或多幅较低质量的图像中产生高质量图像的技术。常见超分算法都预先设定一个整数放大倍数,通过双立方降采样得到低分辨率图像,然后据此训练模型来实现超分。然而,双立方降采样的图像不符合真实情况,基于这些退化图像得到的网络不太实用。若要将图像放大小数倍(如2.5倍),则常见网络均不能胜任。本文第一个目的是在引入真实图像退化模型的基础上只训练一个模型来实现多倍率超分。图像修复则是指修复老旧图像中存在的噪声、模糊、划横等退化。常见的修复模型也多采用双立方降采样退化来获取低质量训练数据。所以本文第二个目是基于具有真实退化的图像来训练修复网络以修复图像。综上,本文研究了神经网络在单幅图像超分及图像修复两个方面的内容:1.引入了新的图像退化模型。传统的降采样退化图像不符合实际,新的退化模型完全从真实图像中收集,所以最终得到的网络能更好地处理真实图像。2.使用分组卷积和通道注意力机制。传统的残差网络存在冗余,新的分组卷积方法将数据分成多组,通过组卷积方式可以学习到更丰富的细节,对图像处理性能提升很有帮助。通道注意力机制则在分组卷积的基础上更加细致地决定了特征图像的使用,将重要的数据通道选择出来用于图像处理。3.借助元学习策略,通过大规模的同类超分任务训练具有良好泛化性的元学习器。通过该元学习器可以帮助超分网络得到多种放大因子对应的网络权重参数。这些参数基于元学习器的先验知识,用于解决一般超分网络只能对图像进行单倍率超分的情况。4.借助域翻译策略来修复老旧图像。在不知道真实老旧图像及其退化的情况下,通过对抗性生成神经网络来约束合成低质量图像和真实老旧图像到接近的隐域,合成图像也使用从真实老旧图像中收集的退化模型来生成。之后利用自动变分编码器将图像的隐域表示翻译为高质量图像,实现图像修复。
其他文献
随着深度学习任务领域的细分和深入,神经网络的结构日益复杂。为了确保复杂模型的可靠性,对模型进行可解释性研究已经成为深度学习研究中不可或缺的重要环节。而生成对抗网络近年来在诸多领域有着广泛应用,包含但不限于风格迁移、语义分割、图像生成等计算机视觉领域,因而对生成对抗网络进行可解释性研究具有重要意义。但现有的基于生成对抗网络的可解释性研究仍存在着不少如模型不稳定、优化困难等问题亟待解决。在本文,我们主
水下无线传感器网络作为海洋勘测、数据收集、自然灾害预测的重要设施之一,广泛应用在水下领域。水下传感器节点定位作为水下无线传感网在各领域的应用基础而备受关注。现如今,由于复杂的水下环境,水下节点定位仍面临节点定位率低、时间同步、定位精度差和节点移动性等诸多挑战。因此,基于水下无线传感器网络的节点定位算法极具研究价值和意义。本文首先介绍了水下无线传感器网络的网络结构以及各组成部分功能、基于水下无线传感
近年来,标准化考场的建设获得了广泛的关注。如何将人工智能技术引入标准化考场当中具有非常重要的实际意义。当前,依靠人工查看考场监控视频与监考官现场记录作弊行为相结合的监考方式人力成本巨大,且极其容易发生遗漏的情况。本文针对考试场景中可能出现的各种作弊行为,研究了基于深度学习的考场作弊行为识别方法,构建考场作弊行为数据集,结合边缘位移提取、运动特征增强与长时时序建模,解决考试场景下作弊行为识别问题。本
随着大数据驱动的人工智能技术飞速发展,机器学习技术在现实生活中被广泛应用。过去机器学习模型常采用集中式训练的方法,该方法需要在中央服务器上搜集并存储大量优质数据。现实中由于行业竞争、隐私安全和法规限制等诸多原因,数据的集中搜集和存储遭受着极大的限制。联邦学习作为一种新型分布式机器学习范式,能够在保障用户数据安全的同时充分利用设备数据。联邦学习能够在保护用户隐私的同时使得大量设备协同训练机器学习模型
红外目标检测是红外侦查、智能安防、夜间辅助驾驶等领域的基础任务。传统的红外目标检测算法依赖人为设计的图像特征,存在检测精度不佳、算法迁移能力较差等问题。深度学习技术拥有端到端的特征表达能力,能够提取具有鲁棒性的语义特征,因此,开展基于深度学习的红外目标检测方法研究对于提高目标检测精度和模型泛化能力具有积极意义。深度学习目标检测算法利用颜色、纹理、几何等浅层视觉特征构建高层次语义,然而红外图像边缘模
抽烟和打手机在现在的日常生活随处可见,人们时时刻刻都会有这样的需求。众所周知,抽烟从来都不是一个好的行为与习惯,不仅在影响自身身体健康的同时还影响着身边其他人的身体健康。除此之外,抽烟也有可能因为人们的疏忽与大意造成严重安全事故,尤其是在具有安全隐患的公共场所。而对于打手机而言,则成了人们日常生活中不可或缺的通信交流方式,因为手机的产生,给人们的生活带来了极大的便利并且节省交流的成本。但是在一些特
在当今社会,纸质文档仍是承载信息的重要方式之一,表格作为一种特殊的内容类型,提供了一种高度凝练的数据展示方式,在文档中占据着重要作用。表格的审核工作,如发票报销录入、医保报销核查、货单清点等,是一种繁复且易出错的工作,带来了巨大的人工成本。此外,在数字化进程的推动下,大量的纸质文档尤其是表格文档需要被数字化以便归档和日后检索。所以表格文档的数字化研究具有重要的经济价值。表格文档具有表格类型复杂多样
合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译需要大量图像数据支持分析,但现实中常面临图像数据不足的问题。仿真生成SAR图像是一种解决方法,其关键是SAR图像的分割与合成,但传统分割方法在抵抗噪声干扰和分割效率上比较低;而且目前缺少一种SAR图像背景与目标的迁移合成方法。随着深度学习方法在图像生成领域的成功应用,研究利用深度生成学习模型来解决SAR图像仿真生成中的
把天线附着于载体表面的这一类天线被称为共形承载天线,常见的载体有飞行器、汽车、船、高铁等。共形承载天线将多功能射频孔径技术与有源电子扫描相控阵技术结合在一起,与共形承载天线相比,智能蒙皮天线主要体现在能对外界环境的变化作出反应。如今军事技术飞速发展,对雷达的要求也越来越高,天线作为雷达的一部分,因此对天线的性能也要求越来越高。但这类载体在工作时,不可避免会遭到风、高温、低温、振动等环境的影响,这些
胶囊内窥镜是一种重要的医学诊断工具,它本质是一个微型摄像机,医生通过拍摄的图像进行疾病诊断。但是在进行检查过程中,会存在一些问题。患者吞服胶囊后,患者和医生不能马上离开,因为胶囊可能滞留在胃部,所以需要医生确保胶囊进入小肠后患者才可离开,这个时间可能长达两小时。同时医生需要人工监测胶囊位置,记录胶囊进入小肠时间,显然对于医生来说这是一个枯燥的工作。另外,胶囊内镜会拍摄数万张图像,医生需要逐一阅读每