DDR4 DRAM访存延迟的建模

来源 :东南大学 | 被引量 : 0次 | 上传用户:guofy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当处理器发生最后一级cache缺失时,需要等待相当长的时间从DRAM中读取数据。这个读取过程的时长会很大程度上影响到计算系统的整体性能,因此对DRAM访存延迟的估计是系统性能评估的重要环节之一。当前针对DRAM访存延迟解析建模研究主要分为两类,一类以访存请求或DRAM指令流为输入并分析前后请求或指令的关系,另一类用排队论来解释DRAM服务的过程。前者往往忽略了访存请求到达率对访存请求排队延迟的影响,而后者则通常假设访存请求到达的时间间隔分布符合负指数分布,在单核场景下存在较大误差。除此之外,这两类模型还存在忽略刷新操作和读写模式切换等共性的问题。本文对DDR4 DRAM的访存延迟建模进行了分析、修正与重建,主要的研究内容包括三个方面:(1)分析了访存延迟的组成,将访存延迟分为排队延迟和服务延迟两部分,并对每一部分的影响因素进行了分析;(2)对本研究组的前期建模研究进行了修正,其中对孙凤影提出的模型修正了刷新操作和读写模式切换对行缓冲命中率的影响,对季柯丞提出的模型修正了步长分布的收集方法和行缓冲命中率的推导过程;(3)提出了基于trace驱动的DRAM访存延迟模型,该模型以访存请求信息流为输入计算每条访存请求的总访存延迟,弥补了前期研究在排队延迟预测精度上的不足。本文的实验部分采用了23个SPEC CPU 2006的基准测试程序来验证修正后的前期模型和trace驱动模型。以时钟精确型模拟器Ramulator为基准,孙凤影提出的模型经修正后DRAM服务延迟估计的MAPE(Mean Absolute Percentage Error)降低了77.1%,季柯丞提出的模型经修正后DRAM服务延迟估计的MAPE降低了15.8%。以Ramulator为参照,trace驱动模型在单核场景下总访存延迟估计的MAPE小于0.01%,多核场景下总访存延迟估计的MAPE小于1%。但评估23个测试程序的总时长仅为Ramulator的6.0%。
其他文献
可穿戴电化学传感器可以方便、快速的测量与疾病相关的生物分析物,在个性化医疗和临床诊断方面具有巨大的潜力。作为其最重要的组成部分,柔性电极的加工具有重要的意义。本文用一种简单并且低成本的方法加工柔性电极,并将其与自主设计的恒电位电路集成在一起构建了用于监测汗液中抗坏血酸含量的集成柔性传感平台。该平台成功实现了对溶液中抗坏血酸的监测,并且具有很好的检测灵敏度、选择性和稳定性。主要内容分为以下三个部分:
金属增材制造技术具有较强的异形结构成型能力以及较高的材料利用率等特点,在航空航天、医疗、汽车等领域得到广泛应用。由于金属增材制造成形过程比较复杂,在材料的熔化和凝固过程中存在较大的温度梯度,会对试件晶粒形态以及尺寸产生影响,而增材制件的晶粒尺寸直接影响制件的性能。通常,金属晶粒尺寸的检测大多采用破坏性的金相法,需要在断面上多个视场进行测量,检测周期较长,因此开发一种准确、高效、无损的检测手段具有重
以黑磷、硅烯为代表的四、五族单元素二维材料(即X-烯)因具有介于石墨烯和二维过渡金属硫化物之间的可调节带隙,愈发受到二维材料及器件研究者的关注。铋,作为第五主族最后一个元素,具有优异的电学性能、巨磁阻效应和量子自旋霍尔效应等独特的物理性质。理论预测,当铋的厚度小于30 nm(即二维铋)时会发生半金属向半导体的转变;同时,比表面积的增大将提高对表面电荷电位感应的灵敏度。因此,二维铋有望应用于场效应晶
21世纪微波通讯和雷达技术飞速发展,然而驻波的存在对微波通讯和雷达系统产生了较大的危害,不仅增大传输线的损耗,降低了能量的传输效率,在特殊情况下甚至还会损坏系统中的元器件。因此需要采用驻波计来检测微波通讯和雷达系统是否实现阻抗匹配。随着微波雷达和通讯等系统的快速发展,微波收发组件等模块的集成度在不断提高,对其自检测的测试将更加重要和频繁。而现有微波驻波计一般具有体积大、功耗高、集成度低等缺点,所以
聚酰亚胺(PI)综合性能较为突出,具有优异的耐高温、耐低温、力学性能、耐溶剂性、阻燃性和较好介电性能,因此被广泛应用于制备电子器件。然而,传统芳香族PI由于二胺和二酐单体分子间易形成电子转移络合物(CTC)作用,从而导致PI薄膜颜色较深,透光率较低,与此同时,分子内刚性结构易导致其不熔不溶。随着光电行业的发展,对PI的耐热性、透光率和机械性能又有了更高的要求。传统PI已不能满足加工和使用需求。与P
上转换纳米晶可以通过多光子吸收过程,在近红外激发下发射可见光,在生命科学、防伪等领域极具应用前景。稀土掺杂的六方相NaYF4基上转换纳米晶是目前最高效的上转换体系。上转换纳米晶的发光强度通常会受到热猝灭而降低,而Yb3+敏化的小尺寸上转换纳米晶却表现出发光热致增强,近年来研究者们对这种异常的发光行为的解释仍有很多争议的地方,并且Yb3+和Nd3+敏化的两类重要上转换纳米晶发光热行为的异同仍需进一步
近几年来,MIMO(Multiple Input and Multiple Output)雷达以其诸多优势受到雷达领域科研人员的普遍关注,它是在发射端和接收端同时使用多个天线发射和接收信号的一种全新雷达体制。MIMO雷达在抗干扰、测角精度、距离分辨率和速度分辨率等方面具有较大优势,而设计性能良好的正交波形有助于提高MIMO雷达的抗干扰能力,更是实现MIMO雷达的关键。MIMO雷达的体制与常规雷达不
金属增材制造选区激光熔化技术近年来发展迅速,由于其高柔性、快速加工和可以加工形状复杂零件等优点,在功能部件生产中得到了广泛的应用。但是打印过程中的快速冷却以及铝合金对激光的吸收率低、反射率高的特征,使得打印表面粗糙度高同时打印过程中常常伴随着各种微小缺陷。此类缺陷将直接影响材料的性能并可能带来极大的安全隐患、造成巨大损失。因此在增材制造过程中对产生于表面及亚表面的缺陷的检出具有重大意义。激光超声检
石墨相氮化碳(g-C3N4)是一种类石墨结构的层状材料,其层间主要由范德华力结合,易于滑动,因而g-C3N4具有十分优异的润滑特性。相比于传统的含S、P的油溶性添加剂,g-C3N4更加环保,具有极好的高温稳定性和化学稳定性。另外,g-C3N4可利用低成本的三聚氰胺、尿素等原料制备,易于实现批量化生产。因此,g-C3N4是一种十分具有潜力的润滑添加剂。但是,g-C3N4在润滑油中的分散性和稳定性较差
近年来,随着可穿戴设备的飞速发展和其市场规模的不断扩大,人们对高能量密度柔性储能器件的需求也日益增长。碳纳米管(CNT)/聚苯胺(PANI)基柔性固态超级电容器具有高功率密度、长循环寿命、良好的柔韧性和高安全性等优点,因而成为可穿戴电子产品的理想储能器件。电极材料对超级电容器性能至关重要,针对CNT/PANI基超级电容器,本课题主要从电极材料改性的角度出发,对CNT薄膜基底进行不同方式的处理以改变