边缘计算中的降维方法研究

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:yy19871003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着物联网技术快速发展,大量数据随之产生,为传统的云计算带来巨大的数据处理压力。作为云计算的延伸,边缘计算将数据处理、存储等能力扩展到物联网设备附近的网络边缘侧,大量数据不需要上传云端,减少了网络传输负载,降低了传输时延。目前,边缘计算存在两个亟待解决的问题:一是如何在数据源附近实现任务的及时处理和反馈。二是样本在每个维度空间分布不均,如何对数据进行有效降维。这两个问题决定了边缘计算的服务质量,进而影响用户的满意度。因此,本文选择边缘计算中的降维方法作为研究课题。针对以上问题,本文基于边缘计算架构,综合考虑边缘环境、降维效果、执行时间等因素,提出了两种降维方法,旨在去除冗余信息,提取数据主要特征,节省用户分析时间,并做出合理判断。具体研究内容如下:(1)基于自适应优化邻域集选择的降维算法设计。针对降维过程中流形结构容易变形、嵌入效果不佳、用户体验较差等问题,首先,设计了一个面向边缘环境的四层数据处理架构,用于执行边缘计算任务。其次,提出了一种基于自适应优化邻域集选择的多组权局部线性嵌入(AMLLE)算法。设置上下限阈值,对边缘数据进行过滤。根据流形弯曲度和样本密度,实现邻域值动态选择。最后,采用多组线性无关权值代替单一权值构造局部邻域结构。在Swiss-roll、S-curve和S-sphere三组经典的数据集上进行实验,结果表明,与传统的局部线性嵌入(LLE)算法相比,本文提出的算法降维效果更为显著,执行时间更短。(2)边缘计算中多步分组降维框架研究。该框架包括基于损失阈和受限玻尔兹曼机的多步分组降维(LTRBM-SGA)算法以及任务分配(TAA)算法两部分。首先,设计了基于损失阈和受限玻尔兹曼机的多步分组降维算法。采用“多步分组”方式,根据属性数目将任务分组分发给边缘服务器。对于边缘服务器接收的任务,该算法使用协方差矩阵测量每组数据属性之间的关联性和异质性,设置信息损失阈函数,进而从大数据中去除冗余维度。利用受限玻尔兹曼机对数据进行特征提取、建模和分类。其次,设计任务分配算法,用于提高任务完成率,增强边缘环境稳定性。最后,实验表明,任务分配算法能够有效提高任务完成率。与鲁棒主成分分析(RPCA)算法、卷积神经网络(CNN)算法相比,本文提出的基于损失阈和受限玻尔兹曼机的多步分组降维算法分类结果更准确,且能够有效减少任务完成时间。
其他文献
随着大数据时代的到来,数据存储量已从常见的TB上升为NB,1NB为260TB,在大数据商业价值备受关注的今天,海量数据的挖掘、分析、存储等问题都给计算机系统性能带来巨大挑战。Map Reduce系统的出现为大数据快速处理带来了可能,它是一种面向大规模数据处理的并行运算模型和方法。本文研究了Map Reduce同顺序作业排序极小化最大完工时间问题,全文共分四章。第1章简单介绍了经典排序问题的基本知识
无线通信技术和微电子技术的不断进步促进了无线传感网络(Wireless Sensor Networks,WSNs)的发展,WSNs广泛应用到生活、军事和工农业生产中的方方面面。但是,WSNs中的结点通常部署在无人值守或者环境恶劣甚至危险的环境中,同时,这些结点通常只有有限的电池、存储、计算和通信资源。因此,在不降低网络性能的情况下确保WSNs安全是一项挑战,结合安全机制的数据聚合可以为解决上述问题
随着计算机技术、无线通信和控制科学的迅猛发展和相互融合,网络化系统在航空航天、工业自动化、智能交通和国防等领域有着广泛的应用.与此同时,由于通信信道自身的消耗与受到的随机干扰、信号幅值的变化,信号在传输过程中会发生信道衰减现象,这会导致系统性能下降和不稳定.近年来,对于信道衰减环境下非线性系统的控制问题研究已取得了一系列重要成果,其中基于端口受控Hamiltonian(PCH)系统的控制和稳定性问
随着全民阅读工作的深入推进,全社会正在逐渐形成爱读书、读好书、善读书的良好氛围,全民阅读理念渐入人心。为了更好地引领校园阅读风尚,曲阜师范大学图书馆创建阅读推广小组,为大学生们构建阅读分享交流的平台。目前阅读推广小组虽然能够开展书香文化活动,但是仍然存在问题:第一,时间地点等因素限制了活动的开展,尤其此次新冠疫情期间,组员不在校,活动难以组织好;第二,小组活动管理不够集中,任务、通知、活动成果等需
极限学习机(Extreme Learning Machine,ELM)作为一种高效的前馈神经网络方法,在机器学习领域的发展非常迅速。与传统的单隐藏层前馈神经网络相比,ELM训练速度更快、泛化能力更强。在训练过程中,连接输入层和隐藏层的输入权重被随机初始化,唯一需要调整的参数是隐藏层与输出层之间的输出权重,且该参数可以通过求解一个岭回归问题得到。因此,ELM在近几年被广泛应用于各种监督学习和无监督学
随着互联网技术的发展,数据泄露等网络安全事件的发生变得更加频繁,因此隐私保护变得越来越重要。而匿名通信技术作为隐私保护的重要手段之一,受到人们越来越多的关注。为了增强匿名通信技术的安全性、匿名性以及通信效率,本文从身份认证和匿名通信两个方面进行研究。首先,基于区块链结构的不可篡改、透明性,本文提出了一个强前向安全的隐私感知身份认证模型,增强了用户身份的匿名性和安全性。其次,结合强前向安全的隐私感知
为有效降低海水淡化成本、满足日益加剧的淡水需求,基于反渗透膜串并联结构的大型反渗透膜组日益成为海水淡化的研究重点。但目前使用的反渗透膜组系统模型是以性能分析为导向的机理模型,该模型多以提升单膜性能为目标,存在形式复杂、不利于展开控制策略研究的问题,同时膜组反渗透效率的优化提升受到膜组串并联结构的限制,为此,本文从结构设计、建模、性能分析及优化控制几个方面对多膜反渗透膜组进行研究。反渗透膜组系统结构
随着全民健身意识的不断加强,越来越多的人加入到了户外运动的行列,同时户外运动的形式也在快速地发生变化,定向运动就是近几年在国内悄然兴起且越来越火的户外运动之一。传统的定向运动主要表现为由特定专业机构举行竞技定向赛事运动,现在其形式也快速多样化,备受广大户外运动爱好者的青睐。同时,传统的定向运动项目存在着诸多缺点,如设备昂贵且容易损坏或遗失,活动前都需要布点等繁琐的准备工作,参与者需要提前学习专业知
近几年,专家学者们通过对大量数据的统计分析发现,癌症、阿尔兹海默症和糖尿病等重大疾病的发展调控机制与lnc RNA和mi RNA等RNA分子之间存在着重要关联。因此,设计提出有效的lnc RNA-疾病关联(Lnc RNA-Disease Association,LDA)预测方法和mi RNA-疾病关联(Mi RNA-Disease Association,MDA)预测方法对于复杂疾病的预防、诊断和
本文主要研究了几类反应扩散方程的适定性和动力学,包括非自治三分量可逆Gray-Scott系统、随机三分量Gray-Scott系统以及随机二厢Gray-Scott系统.本文分为六个章节.第一章,我们介绍了动力系统、吸引子以及反应扩散方程的物理背景和研究现状,并给出了本文的创新所在和整体结构.第二章,我们定义了一些符号,并给出了一些定义、定理、命题和性质,包括随机动力系统和吸引子的定义.第三章,我们考