论文部分内容阅读
当金属纳米颗粒与入射光发生耦合时,金属内部的自由电荷只会在颗粒内部产生,并且在核心周围产生振荡,这种振荡被称为局域表面等离子共振(Localized surface plasmon resonance,LSPR)。金属颗粒的极化率是典型的洛伦兹方程(Lorentzianform),当LSP共振模与其他波发生干涉时,可以发生Fano共振。通过UgoFano给出的共振方程的谱线可以发现,Fano共振可以降低共振半宽,同时由于干涉效应可以产生较强的局域电场。Fano共振可在慢光、化学灵敏度、表面增强拉曼光谱(SERS)、等离子体增透等许多领域有很广泛的应用。因此,对金属纳米颗粒局域表面等离激元与界面之间的Fano干涉行为研究有很重要的意义。本论文的主要内容分为以下两部分:1、界面附近纳米颗粒阵列的LSP与界面之间的Fano干涉效应的研究首先,研究采用了 FDTD模拟和应用修正菲涅尔系数方程进行理论分析,对于位于衬底上的半球金属纳米颗粒,当光从空气中入射时,反射波的相移随波长变化较小。所以,不论密度如何变化,反射谱在LSP共振波长处均表现为波峰,金属纳米颗粒LSP散射波与界面的反射波之间的干涉行为在LSP共振波长处表现为相长干涉。而当光从衬底方向入射时,反射波的相位会随波长从-π到π之间变化,金属纳米颗粒LSP散射波与界面的反射波之间的干涉行为在LSP共振波长处表现为相消干涉,反射光谱会显示出典型的Fano线型。然后,我们做了一系列不同厚度的银薄膜沉积在石英衬底上(2nm,4nm和6nm),通过快速热退火使其形成颗粒,并对样品进行了表征和测试。当光从衬底方向入射时,反射谱会分别出现波谷、不对称的Fano线型和波峰,这个结果与理论计算相一致。2、LSP与界面所形成的双模Fano共振当在衬底上有多个LSP共振模式存在,那么界面反射和LSP散射波之间的相互作用会变得更复杂。首先,由于尺寸、形状相同的金和银的LSP共振波长不同,衬底上混合金银纳米颗粒阵列可产生两个LSP共振模式。由于银和金纳米颗粒都是半球形并且位于衬底上,所以银和金纳米颗粒的局部驱动电场的相位是相同。因此,两种纳米颗粒的极化率相位在每个对应的LSP共振波长处均相同。所以,当光从空气/衬底方向入射时,界面反射的波与这两个LSP之间分别在相应的LSP谐振波长处干涉相长或相消。因而,在不同密度的反射谱中就会出现峰或者谷,当密度适当,会出现不对称的Fano线型。而对于衬底上沉积银立方体纳米颗粒阵列,由于界面导致的对称性破缺,立方纳米颗粒上下表面将产生在分别两个不同水平面的不同共振波长的LSP散射模式。我们进一步地研究了这两种散射模式与界面反射波之间的Fano干涉行为,结果表明,由于上下两个界面之间存在额外的光程差,其反射谱表现与界面上的混合金银纳米颗粒阵列表现不同。当光从空气一侧入射时,无论金属纳米颗粒的密度多大,在两个LSP共振峰之间均将产生一个陡峭的波谷,这种行为可用修正的薄膜干涉理论进行解释。界面上金属立方体纳米颗粒的LSP与界面间的Fano干涉行为提供了一种可能的高性能化学探测器的制备手段。