论文部分内容阅读
泄洪雾化是水利工程高速泄洪时出现的一种水气弥散现象,伴随泄洪雾化产生的强风和强降雨会对水电站正常运行、边坡稳定、交通安全等造成较大危害。我国的高坝枢纽工程往往具有高水头、大流量、窄河谷、高边坡等特征,许多指标位居世界前列,泄洪伴生的雾化问题尤其突出,使得泄洪雾化安全防护的难度大为增加。对泄洪雾化展开研究,构建复杂泄洪环境下的精准预测模型、定量分析各因素对泄洪雾化的影响、探究泄洪过程中水气的运移规律,对推动我国高坝枢纽泄洪雾化研究从经验走向科学,保障重大水利水电工程建设及长期安全高效运行具有十分重要的工程现实需求及科学理论价值。相较于原型观测、物理模型试验、理论分析计算等方法,数值模拟方法具有经济高效、不受模型相似率限制、对原型观测数据依赖度低等优势。本文基于水气两相流理论,采用数值模拟方法围绕泄洪雾化的数学描述、参数界定、数值求解以及水气运移规律展开。基于水气两相流理论,发展了描述泄洪雾化过程中水气运动的数学模型,研究了泄洪雾化数学模型的数值求解方法及技术,并编写了相应的有限元计算程序,根据数值模拟的需要,提出了考虑掺混程度影响的水气两相混合流体动力粘滞性模型,利用水布垭电站泄洪雾化原型观测数据对数学模型进行了验证,并定量分析了河谷宽度、初始下泄流速以及下游水深等因素对泄洪雾化的影响。主要研究内容如下:1)基于水气两相流理论,发展了描述泄洪雾化过程中水气运动的数学模型。该模型由水气两相流体总的的质量、动量守恒方程,气的动量守恒方程,水的质量守恒方程以及雾雨转化公式组成,能够对不同消能型式下的泄洪雾化过程进行描述。通过混合流体的质量守恒方程可导出流体压力求解方程,实现了压力的直接求解,提高了数值求解过程中的稳定性及收敛性。描述气体运动的动量守恒方程包含了水气相间作用力的影响,能够对水、气运动的差异性进行较为完备的描述。通过水的质量守恒方程导出浓度传输方程,结合雾雨转化公式能够实现泄洪雾化降雨强度的预测。2)采用有限单元法,研究了泄洪雾化数学模型的求解方法及求解技术,发展了大型高度非线性偏微分方程组的数值求解方法,提高了数值求解泄洪雾化过程中的数值稳定性及收敛性,实现了泄洪雾化过程的数值模拟。在泄洪雾化数值求解中,采用有限单元法对泄洪雾化数学模型中的偏微分方程组进行空间离散,利用大涡模拟方法(LES)对泄洪雾化中的湍流进行处理,寻求合适的压力-速度耦合求解策略以保证数值求解的稳定性及收敛性,避免了传统商业软件因求解难题而进行的简化,进而编写了三维有限元计算程序并对程序正确性及有效性进行了考证。3)开展了水气两相混合流体动力粘滞性试验测试研究,发展了一种适用于水气混合流体的动力粘滞性测试方法,测试了不同掺气量及掺混程度下的水气混合流体动力粘滞性,进而推导了包含掺气量及掺混程度的水气混合流体动力粘滞系数模型。采用物理试验与数值模拟相结合的手段,通过试验测试物体在混合流体中运动时所受的粘滞力,结合数值模拟得到物体在不同粘滞性流体中所受的粘滞力,建立试验测试与数值模拟间的相关关系,进而实现水气混合流体动力粘滞系数的测试。推导了考虑掺气量及掺混程度的水气混合流体动力粘滞系数模型并分析了掺气量及掺混程度对水气混合流体动力粘滞性的影响:当掺混程度较大时,水气两相混合流体的动力粘滞系数随掺气量的增加呈先增加后减小的变化趋势,当掺混程度较小时,水气两相混合流体的动力粘滞系数随掺气量的增加呈线性减小的变化趋势。水气两相混合流体动力粘滞性相关的研究为数值模拟泄洪雾化提供了参数支撑。4)采用本文的泄洪雾化数学模型,成功实现了水布垭电站泄洪雾化的三维仿真计算模拟,结合水布垭电站泄洪雾化监测资料,对模型计算结果的正确性及有效性进行了验证,在此基础上,研究了泄流量及闸门组合方式对电站泄洪雾化的影响。通过与水布垭电站泄洪雾化原型监测数据的对比分析表明,数值模拟方法对泄洪雾化过程中的风速及降雨强度具有较好的预测能力,其中,风速的预测偏差在±15%以内,降雨强度的预测偏差在±20%以内。水布垭电站泄洪雾化过程中的风速及降雨强度均随着泄流量的增加而不断增大,但在变化趋势上又有所不同:泄流量较小时,两者均随泄流量增大呈线性增加关系,而泄流量增大到一定值后,最大雾化风速的增速逐渐放缓,最大雨强却随泄流量增大呈指数增加趋势。5)通过对水布垭电站泄洪雾化进行仿真模拟,研究了泄洪雾化过程中的水气运移规律。结果表明,泄洪过程中水气运动受地形约束较为明显,从近地表水气运动来看,水气在局部受阻挡区域易形成“回流”现象,并沿障碍物爬升;远离地表以后,不同高程平面内的水气既有向上也有向下运动的区域,呈现一定程度的跃动现象;当高程达到一定高度后,水气运动方向均向下,表明水雾不会上升至这一高程。根据水、气运动过程中的压力分布及水气运动方向,可将泄洪雾化分为三个区域,即:水气掺混区、水雾生成区和水雾扩散区。在水气掺混区,水体中的压力小于外界气压,大气中的空气通过掺气设施、水体表面不断掺进水体,形成水气掺混流体;当掺气水流落入下游河道时,水体内压力迅速增加,水中气泡大量逸出,气泡破裂产生许多微小雾滴,形成水雾;在水雾扩散区,水体中逸出的气体不断向高空及下游河道方向运动,并“裹挟”雾滴运动,从而形成常见的雾化现象。6)针对溢洪道挑流消能方式,计算研究了河谷宽度、初始下泄流速以及下游水深等因素对雾化风速、降雨强度时空分布的影响。结果表明,河谷宽度对雾化风速的影响较为显著,河谷越窄,水雾沿河道传播的距离越远,近坝区的雾化强度越大;本研究中,当河谷宽度增加五倍时,泄洪稳定时近坝区的雾化风速降幅可达到一半以上。初始下泄流速对雾化风及雾化降雨的影响各不相同,当初始下泄流速大于5 m/s以后,初始下泄流速的增加并不会引起近坝区雾化风速的显著增大,而是受雾化风影响的范围显著增大;近坝区雾化降雨强度则随着初始下泄流速的增加而不断增加,基本呈指数增加趋势。下游水深的增加对减小泄洪雾化风速是有利的,在本研究中,下游水深每增加1 m,泄洪稳定时的雾化风速则减小0.2 m/s左右;下游水深对水舌落点处河道底板所受的压力影响较大,水深越深,泄洪达到稳定时引起的河道底板压力增量越小,当下游水深深度合适时,泄洪引起的河道底板压力增量为零。