论文部分内容阅读
块状非晶合金由于其优异的力学性能获得了广泛的关注,但是在室温和高应力条件下表现为高度局域化的非均匀塑性流变,其室温宏观塑性几乎为零,限制了非晶合金作为结构材料的应用。目前通过采用内生或外加的方法引入第二相制成非晶合金基复合材料能够有效地改善了其室温塑性变形能力,从而扩展其应用领域。本论文工作采用三维连通的多孔SiC预制体作为第二相,通过压力浸渗铸造法制备出高比强度的SiC/Zr基非晶合金双连续相复合材料,并系统地研究了该复合材料的力学性能与变形断裂行为及组织性能相关规律。
本论文首先通过座滴法研究Zr41.2Ti13.8Ni10.0Cu12.5Be22.5合金熔体在多孔SiC基片上的润湿性、界面反应以及浸渗行为。结果表明:温度在1053K以上时,合金熔体与SiC基片具有良好的润湿性;在1103K以上时,合金熔体在多孔SiC基片上能够发生自发浸渗,但仅依靠自发浸渗难以完全填充到多孔SiC的开放孔隙之中;同时,合金熔体与SiC基片在界面处能够发生元素间的相互溶解扩散并形成约5μm的扩散反应层。在此基础上,我们确定了合理的复合材料制备工艺。选取两种网络结构的多孔SiC预制体,利用压力浸渗铸造法在1103K保温3~5min成功地制备出系列体积分数的SiC/ZrTiNiCuBe非晶合金双连续相复合材料。微观结构研究表明该复合材料的组成相均呈三维连通的网络结构,并且两相分布均匀,界面结合良好,在界面处无宏观裂纹、孔洞等缺陷。界面分析表明在SiC相和非晶合金相之间存在1~2μm的相互扩散层,同时细小的颗粒状反应产物(ZrC与TiC的混合物)组成了宽度约为300nm的界面反应层。
进一步研究了系列双连续相复合材料的室温准静态压缩力学行为,分析了SiC体积分数对上述材料的力学性能及变形断裂行为的影响。结果表明:SiC泡沫/ZrTiNiCuBe非晶合金双连续相复合材料在整个室温准静态压缩过程中表现为弹性变形,其宏观断裂方式为剪切断裂,剪切断裂角约为40°;断口上的非晶合金相主要呈现细、浅的“河流状”脉纹花样,而SiC相则呈现出大量穿晶断裂后的解理台阶。结合断口分析与压缩断裂前后的侧表面形貌观察,发现微观尺度上的不规则粗糙界面是该复合材料在受力变形过程中的薄弱环节。随着SiC体积分数从51%增加到82%,SiC骨架/ZrTiNiCuBe非晶合金双连续相复合材料的室温准静态压缩行为呈现出从弹性-塑性变形到线弹性变形的转变,同时其宏观断裂方式也由剪切断裂转变为轴向劈裂,我们根据Mohr-Coulomb准则分析了该复合材料剪切断裂行为与轴向劈裂行为的竞争机制。断口分析表明,51%Vf复合材料的断口形貌主要由非晶合金相的粘滞流变特征和SiC相的解理断裂特征组成,而82%Vf复合材料则以SiC相的解理断裂特征和两相的界面分离特征为主。我们采用Selsing模型分析了上述两种体积分数复合材料内部热残余应力场的分布,讨论了热残余应力场对于非晶合金相中剪切带以及SiC相中裂纹扩展路径的影响。
接着,采用分离式霍普金森压杆装置(SHPB)对51%vf复合材料进行动态力学性能测试。通过波形整形技术,在SHPB实验过程中实现了~500s-1到~1700s-1的一系列常应变率加载,研究了两种长径比的51%Vf复合材料试样在动态载荷作用下的力学性能及变形断裂行为。结果表明,φ5mm×5mm的试样表现为负的应变率敏感性,呈现出典型的剪切断裂特征;而φ5mm×2.5mm的试样则表现为正的应变率敏感性,在断裂后形成了若干的小体积碎块,但是相同尺寸试样的峰值应力均随着应变速率的升高呈现出线性增加的趋势。断口分析表明,在动态加载下,SiC相的破碎情况较准静态时更加严重,形成了更多的细小碎块;而非晶合金相的粘滞流变现象也更加明显,表现出大范围的局部熔融后的流动现象。
最后,通过对51%VfSiC骨架/ZrTiNiCuBe非晶合金双连续相复合材料在不同温度下(173K~573K)的压缩力学性能测试,发现该复合材料在低于室温的试验温度下,其压缩变形行为主要受到非晶合金相中原子活动能力的影响,复合材料的强度随着环境温度的降低而升高;当压缩试验温度高于室温时,在复合材料变形的同时伴随着其中非晶合金相的结构弛豫过程,复合材料的压缩变形行为主要受到非晶合金相结构弛豫的影响,其压缩强度随着试验温度的升高而增大。
通过对SiC/ZrTiNiCuBe非晶合金双连续相复合材料制备工艺、组织性能和变形行为的规律性研究,为该种复合材料的制备提供技术指导,并为该复合材料的应用提供实验基础及理论支持,以期能够扩大非晶合金复合材料的应用领域。