二维磁性光子晶体环行器探讨及其在微波频段的实验验证

来源 :深圳大学 | 被引量 : 0次 | 上传用户:lgkenny1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光子晶体以其显著的特点可如人所愿地控制光子的运动,被认为是未来光子器件研制的核心。二维磁性光子晶体环行器是一种正向顺序导通而反向传输阻止的多端口非互易无源器件。该器件可被用于隔离相邻模块或器件之间的反射光,从而降低干扰、增强大规模集成光路的稳定性。首先,本论文介绍了二维磁性光子晶体的几种分析方法:采用平面波展开法计算光子晶体带隙结构及缺陷结构的模场分布;使用有限元方法将波动方程转化为有限元方程组,从而将求波导中电磁场的问题,转变为求解本征值及其对应的本征函数的问题。进而求解出电磁波在环行器中的传输情况。再者,利用三角晶格的二维磁性光子晶体缺陷结构,设计了三端口Y型铁氧体柱环行器。采用有限元方法模拟Y型波导和环行器的功能并计算外部特性,并在微波波段首次成功研制了Y型光子晶体环行器。该环行器在中心频率10GHz处隔离度高达-61.1dB。基于麦克斯韦方程的形式不变性理论,将光波波段的二维磁性光子晶体缺陷结构进行尺寸缩放以实现微波波段的二维磁性光子晶体环行器。分别以空气孔和介质柱阵列结构为基础在3mm波段设计了三端口Y型环行器。最后,本文从理论和实验上研究了基于正方晶格光子晶体的十字型波导,并在波导结腔位置引入旋磁铁氧体柱,最终首次在微波波段成功研制了四端口十字型光子晶体环行器。利用正方晶格光子晶体缺陷结构,设想了三端口T型铁氧体柱波导环行器。T型环行器隔离度高达-45.2dB,插入损耗低至-0.88dB,其优异的外部性能参数表明二维磁性光子晶体环行器在未来集成光路中具有重要的应用潜力。
其他文献
由于X射线分幅相机兼具有时间、二维空间及能谱三方面分辨的特点,使之成为惯性约束聚变(inertial confinement fusion,ICF)试验中X射线测量的非常重要的诊断设备。该设备是开展高能量密度物理学、惯性约束核聚变、光物理、光化学等方面研究的重要技术支撑,所得数据是分析超快过程的重要依据,因此自主研发我国的高时空分辨能力的分幅成像诊断技术对我国进一步开展相关领域的研究具有重要的支撑
临床成像技术,如磁共振成像(MRI)或计算机断层扫描(CT),可实现对疾病的早期诊断,极大地促进了预防医学的发展。然而,对安全、紧凑、低成本替代品的需求日益增长,这促进了新型生物成像方式的发展。光学成像以其优越的时空分辨率、不受电离辐射的影响、低成本等优点在临床上得到了广泛的应用。然而,基于光的成像模式其主要缺点是光对生物组织的穿透深度低。近年来,近红外(NIR)和短波红外(SWIR)光谱区域的光
当今世界日益突出的能源危机、环境污染等问题,使得表面功能结构制造成为国际学术研究的热点之一。微细电加工(微细电解加工和电火花加工)是实现表面功能结构制造的主要技术手段之一;而该技术的必备工具——三维微电极,难以通过常规机械加工方法制备。因此,在当前,微细电加工过程通常是利用微柱状电极、以逐层扫描铣削放电的方式开展,并用于制备各种复杂三维微型腔。但是,逐层扫描放电加工效率较低,而且微柱状电极横截面积
超表面是一种特殊的二维平面超材料,通过在超单元的两侧引入不连续变化的电磁波响应,可以高效地按照预想来操控反射和透射波的相位、振幅、以及极化。相比于传统三维超材料,亚波长超表面具有更短传播距离因而其吸收损耗小、重量轻体积小更易制作和集成。超表面已经在天线、传感、主动元器件、以及集成技术等方面展现了巨大应用潜力。高频段特别是光波段的金属超表面存在着很高的本征欧姆损耗,而电介质材料则展现了更小的损耗,因
在移动无线通信系统发展过程中,频谱效率(Spectral Efficiency,SE)和能量效率(Energy Efficiency,EE)始终是衡量其性能最重要的两个指标。随着科学技术的发展,移动端通信业务需求出现爆炸式的增长。这对移动无线通信系统的频谱效率要求越来越高。而且在科技飞速发展的同时,也使全球环境日益恶化,能量消耗不断持续增长。因此为保证人类的可持续发展,如何提高能量效率已成为全球各
如今,石化能源趋于枯竭,癌症严重威胁着人类的生命,开发新能源和治愈癌症成为人类面临的两大迫切需要解决的问题。太阳辐射能取之不尽,用之不竭,是人类理想的新能源,开发太阳能首先需要解决的问题是,提高太阳辐射能收集的效率,而目前的收集效率都不是太理想。治愈癌症的首要问题是要尽早发现癌症细胞,越早诊断出癌细胞,治愈的几率越大。因此,开展以太阳能利用为主要用途的能量收集和以肿瘤细胞高灵敏度探测为主要目的的生
半导体光电器件的性质取决于三个瞬态的物理过程:载流子的生成,复合以及输运。所以研究理解半导体材料中光生载流子的动力学过程是很有必要的。在研究材料的载流子动力学方面,超快光谱技术是一种有效的实验工具。利用超快光谱技术可以得到材料被激发后的瞬态吸收光谱,通过对瞬态吸收光谱进行分析,可以揭示材料中光生载流子的产生,传输以及复合方式等方面的信息。本论文中采用泵浦探测瞬态吸收光谱系统研究了单层过渡金属硫化物
随着移动互联网和云计算的不断发展与融合,移动云计算应运而生,它继承了云计算的良好特性,为资源受限的移动智能终端提供存储和计算支持,推动了移动智能终端的迅速普及。人们通过移动智能终端可随时随地访问存储在云服务器的数据,给工作和生活带来了极大的便利。然而,云服务器存储的数据所有权与管理权分离,极易发生用户数据泄露。如何在高效利用移动云计算优势的同时,保障用户数据的隐私和安全是一个亟需解决的问题。本文对
随着计算机技术和人工智能的逐渐发展,模式分类及图像识别技术已经广泛地应用于科学、医学和经济等各个不同领域。不同的分类任务和场景往往需要使用不同的模式分类技术和分类模型。对于某些标准数据集(如加州大学提出的用于机器学习的UCI数据,其属性值和类别已经标注)的分类任务,主要考虑特征提取和构建合适的分类器;对于图像数据的识别任务,由于图像数据的采集和存储易受到噪声污染且图像的维数一般都较高,除了考虑特征
光学微腔是一种尺寸在微米量级或者亚微米量级的光学谐振腔,它利用在折射率不连续的界面上的反射、全反射、散射或者衍射等效应,将光限制在一个很小的区域,具有比传统介质微腔更宽的调控或感测能力和自由光谱范围。光学微腔是光电子器件中应用十分广泛的一种,在光通信、传感、激光、信号处理等领域有着极大的研究价值和应用前景。最近几十年,由于光纤技术的快速发展,基于光纤的光学微腔器件成为了研究的热点。各种不同类型的光