论文部分内容阅读
道路交通网络在外部因素影响下,路网性能存在随机性。这些外部因素包括可重复的随机因素和不可重复的随机因素两类,可重复性因素如日常的道路拥堵带来的路段通行能力的下降以及日变的交通需求等,此类因素的特征是长时间内具有持续性;不可重复性因素如交通事故等突发事件对路段通行能力的影响,此类因素的特征是只在事件持续期内影响路网。这些随机因素影响路网通行能力及出行行为,改变路网性能。交通事故等突发事件造成的非重复性拥挤是影响路网性能随机变化的一个重要原因。交通事故造成路网局部能力的随机下降,打破路网原有的平衡状态,可能导致路网性能的急剧波动,进而降低路网容纳交通量的能力。而从用户的角度,交通事故等突发事件所造成的非重复性拥挤具有弱预测性,难以在出行前作出相应反应,导致出行时间可能大幅增加。因此,分析交通事故影响下路网状态的演变规律及事故对路网性能的影响,对于路网改建,交通管制及事故预防措施等均具有重要意义。为分析事故影响下交通网络可靠性,需先分析事故影响下的路网状态及路径选择行为。因此论文构建了事故影响下的流量加载模型,分析了在途路径选择行为,在此基础上提出了动态行程时间可靠性和动态容量可靠性定义,为事故影响下的网络性能描述提供了理论支撑。论文的主要研究内容包括以下几个部分:(1)总结了三类动态流量加载模型——速度-密度流量加载模型,元胞传输模型及路段传输模型。速度-密度模型以速度和密度之间的函数关系为基础,后两个模型以流量和密度之间的函数关系为基础。三个模型均包括路段模型和节点模型两部分。比较了三类模型的优缺点:速度-密度模型假设流量在路段上均匀分布操作简单但是误差较大。元胞传输模型计算每个元胞的驶入驶出流量,计算量大,路段传输模型则需要更多的存储空间。(2)改进了事故影响下的动态流量加载模型,基于Logit选择原则描述出发时刻的路径选择概率,建立了事故影响下的拟动态模型。在速度-密度模型中,利用分流合流模型及速度-密度函数,分别建立路段容纳车辆数和非事故路段走行时间模型,通过分析事故路段交通流的演化过程,利用交通波理论估计排队长,建立事故路段走行时间模型。给出了可变元胞传输模型和路段传输模型中路段走行时间及路段流量密度的计算方法。分析了交通事故影响下路网中走行时间与用户择路概率的相互作用及其演变规律,结果表明:事故持续期到排队完全消散期内,路径走行时间和路径选择概率呈现此消彼长并持续震荡的状态;事故持续期和事故清除后,事故路段上的排队位置发生转移。(3)为分析事故影响下出行者在途路径选择行为,引入混合Logit模型描述出行者在节点处的路径转变概率。采用Logit模型描述出发时刻的路径选择概率,结合路段传输模型加载流量,得到影响路径转变概率的影响因素值,改进了路段传输模型节点模型中选择概率的计算,分析了考虑在途路径选择情况下路径选择概率和路径走行时间的变化规律。结果表明:事故持续期间,路径上的选择概率及走行时间均呈现震荡状态,与只考虑出发时刻路径选择的区别在于,路径选择概率及路径走行时间的震幅相对较小,表明了出行者对出发前选择路径的依赖性。(4)为计算事故持续期内路网可靠性,定义了动态行程时间可靠性,将交通事故持续时间离散化,建立以路段传输模型和Logit路径选择模型为基础的拟动态模型,得到时段内到达车辆数及其走行时间,计算车辆平均走行时间;将事故持续时间,事故严重程度及事故发生位置看作随机变量,基于蒙特卡洛技术计算路网行程时间可靠性。结果表明:出行需求越大,可靠度越低;时间阈值越大,可靠度越高;持续时间均值越大,可靠度越低;可靠度随着持续时间方差的变化则根据不同时间阈值的大小有递减和递增两种趋势。事故越严重,可靠性越低,可靠性值随着事故发生位置的改变而改变。(5)为计算事故影响期内路网可靠性,定义了动态容量可靠性,将交通事故影响时间离散化,建立了以路段传输模型和Logit路径选择模型为基础的拟动态模型,得到各时段内允许驶入路网的总车辆数作为路网容量指标;将事故持续时间,事故严重程度及事故发生位置看作随机变量,基于概率解析法计算路网容量可靠性。结果表明:容量需求阈值越大,容量可靠度越低;持续时间均值越大,容量可靠度越低;可靠度随着持续时间方差的变化则有递增和递减两种趋势。