论文部分内容阅读
等离子体改性条件不同会产生不同的改性效果,并且氮等离子体中活性粒子成分复杂,为了获得更好的改性效果,本研究对不同条件下的远程氮等离子体进行了诊断。采用发射光谱法诊断氮等离子体中的自由基参数;利用双悬浮朗缪尔静探针测定不同条件下远程氮等离子体场中的电子温度和离子密度。最后,根据诊断结果,对聚丙烯腈(PAN)超滤膜进行改性处理,获取不同条件下膜的接触角的变化情况,确定了聚丙烯腈(PAN)超滤膜的最佳改性条件,测量该条件下膜的水通量和BSA通量,计算通量衰减率、污染率和截留率。研究结果表明:(1)远程氮等离子体中含有大量的电子、离子和自由基,其中自由基光谱的波长范围主要集中在300nm~500nm之间,以氮的第二正带系中的NⅢ为主(如NⅢ310.9、NⅢ337.4、NⅢ379.2),最大特征峰的波长为337nm,在500nm~1100nm之间也存在着少量的NI(如NI670.3、NI870.3),NⅡ(如NⅡ359.5、NⅡ655.4、NⅡ889.3)。(2)等离子体内的自由基有利于膜表面的改性反应,可以通过改变放电条件调节自由基含量。实验中自由基光强随放电功率和压强的的增大而增大,10Pa~15Pa的自由基含量相对较高;随远程距离的增加先增大后减小,在35cm时光强开始下降,50cm处所有谱线已检测不到;此外光强也会受放电中心距进气口的距离的影响,本实验中放电中心距进气口20cm到50cm内光强较大且稳定。(3)电子能量高、密度大时会对材料表面产生刻蚀作用,破坏材料的表面结构。根据朗缪尔探针诊断结果,电子温度随放电功率的增大而降低;随气体压强的增大而升高;随远程距离的增大先增大后减小。而电子密度随放电功率的增大而增大;随气体压强和远程距离的增大而减小,到30cm处已趋近于零。(4)在诊断结果基础上实验对PAN超滤膜进行了改性研究,获得的最佳改性条件为放电功率100W,压强20Pa,处理时间95s,远程距离40cm。改性后膜材料的亲水性得到提高,使接触角从原膜的57°降至20°,在BSA过滤实验中,该改性条件下的PAN膜的通量衰减率从原膜时的62%减少至48%,污染率从43%下降至38%,截留率由83%提升至89%,PAN超滤膜的抗污染性能得到提高。