论文部分内容阅读
随着人工智能和机器学习的快速发展,机器学习已渗透到石油勘探开发的各个环节,对石油地球物理勘探产生了重要的影响,同时也带来了新机遇和新突破。石油地球物理勘探,尤其是测井和地震勘探,在研究过程中通常会遇到一系列的分类问题和回归问题。本文在调研总结石油地球物理勘探中的分类、回归问题的基础上,对分类问题中的裂缝和缝洞充填物识别,以及回归问题中的多波联合反演展开了研究,并分别提出了改进方法。针对裂缝和缝洞充填物识别,本文提出了一种基于最小二乘支持向量机的识别方法。结合FMI电成像测井图像和岩心观测资料,对裂缝和缝洞充填物进行分类;分析裂缝和缝洞充填物的测井响应特征,从众多的测井曲线中挑选出对裂缝和缝洞充填物敏感的测井曲线;由于利用单个测井曲线来识别的效果往往不佳,因此提取对裂缝和缝洞充填物更加敏感的组合参数;利用最小二乘支持向量机方法分别建立裂缝和缝洞充填物的识别模型,并通过粒子群算法对最小二乘支持向量机参数进行优化,以提高裂缝和缝洞充填物的识别精度。实际资料测试中,该方法的识别精度高于BP神经网络方法,识别结果与成像测井、岩心资料具有较好的一致性,说明该方法是可行的且具有一定的实用价值。针对多波联合反演,本文提出了一种基于改进贝叶斯推断和最小二乘支持向量机的非线性反演方法。该方法采用精确Zoeppritz方程进行PP波和PS波正演,避免近似公式在远炮检距和弹性参数纵向变化较大等情况下的误差;利用最小二乘支持向量机方法建立PP波、PS波反射振幅与弹性参数之间的最优非线性模型,以解决多波联合AVO反演的非线性问题;通过改进的贝叶斯推断对最小二乘支持向量机超参数的后验概率进行最大化,获得了最优的超参数,从而提高了多波联合反演的精度。模型试算表明,该方法的反演精度和抗噪能力优于常规方法;该方法的实际资料反演结果与实际测井曲线更加吻合,反演误差更小,表明该方法有着较强的适用性,利用该方法对研究区的实际多波地震资料进行反演是可行的。