论文部分内容阅读
伴随着我国经济的飞速发展,人们生活水平的不断提高,城市内人流量和车流量也在迅猛增长,而城市中车辆多道路少,从而导致城市内交通道路拥堵问题日益严峻。传统的交通道路信号灯控制实时性较差,已经很难满足当前我国一些大中型城市各个交通十字路口的流量要求。为了缓解道路拥堵压力,本研究将神经网络技术应用在交通流量预测与交通信号控制中。首先阐述了交通道路信号灯控制的研究现状,并分析了神经网络在交通信号灯控制中的相关技术。然后在研究具有或不具有随机效应的同步双向网络的离散时间递归同步的基础之上,建立了一个新颖的同步误差模型,设计了自适应控制器与量化器的组合方案可用于具有或不具有随机效应的同步双向网络的递归同步,并且通过仿真实验来验证其有效性。而且提出了一种基于CNN-LSTM-PSO的深度学习短期交通流预测框架,该框架将CNN(Convolutional Neural Networks,卷积神经网络)和LSTM(Long Short Term Mermory network,长短期记忆网络)相结合,并以PSO(Particle Swarm Optimization,粒子群)算法进行混合网络结构的超参数优化。该方法可获取交通流数据的局部趋势和长期相关性之间的相关特征。最后通过对实际交通流数据集的实验验证了该方法的有效性。本文设计并实现了交通道路信号灯智能化控制系统,对交通道路信号灯智能化控制系统进行了详细的总体设计,并且针对系统的相关功能进行了全面的测试。测试结果显示交通道路信号灯智能化控制系统能够有效缓解城市交通道路拥堵状况,提高了城市交通通行效率。