论文部分内容阅读
汽油烷基化硫转移是指利用汽油中的烯烃与噻吩类硫化物发生烷基化反应而提高含硫化合物的沸点,并通过精馏作用将反应生成的高沸点烷基化产物转移到重馏分中,从而使轻馏分中的噻吩类硫化物得到有效脱除的技术。通过硫转移可显著提高轻重汽油的切割点,将C5~C7烯烃切入轻馏分,从而可避免含硫重汽油馏分在加氢处理时由于烯烃大量饱和而出现的辛烷值损失。该技术可在常压下操作,并且采用固体催化剂,具有绿色环保的特点。应用催化精馏技术可以将汽油烷基化硫转移工艺中的反应和精馏耦合在一起,达到过程强化和节能的目的。本论文围绕这一目标,系统地开展了汽油烷基化硫转移催化剂、汽液相行为、催化精馏过程分析和模拟等方面的研究。首先,对汽油烷基化硫转移固体酸催化剂进行了评价,并对体系进行了热力学和反应动力学研究,包括硫化物与汽油组分之间的相平衡测定、主副反应的热力学平衡转化率和反应焓的估算、固体酸催化剂的性能评价以及Amberlyst35树脂催化真实汽油中噻吩类硫化物烷基化反应动力学方程参数的确定等,从而为汽油烷基化硫转移催化精馏过程设计得到了所需的相平衡参数、催化剂操作条件及动力学方程参数等信息。然后,基于所得到的热力学及动力学参数,本论文使用反应剩余曲线,进一步对汽油烷基化硫转移催化精馏过程进行了可行性分析和设计,并使用ASPEN-PLUS模拟软件对其进行了验证。结果表明:使用催化精馏技术可以达到汽油烷基化硫转移的目的,优化后的催化精馏塔可以获得硫含量低于1ppmw的汽油产品,且可显著降低烯烃聚合副反应的发生。此外,本论文对渗流型催化精馏元件的流体力学性能进行了研究,并提出了相应的设计原则。最后,考虑到催化精馏过程中反应和分离之间耦合作用的复杂性以及汽油烷基化硫转移体系关键组分浓度尺度很大的特点,本论文使用多尺度方法对其进行了研究,主要包括两部分:一是通过对现有的能量最小多尺度模型进行分析,得到了控制机制竞争多尺度的思想,并应用该思想为催化精馏过程建立了多尺度模型;二是对微浓度和全浓度的相平衡数据进行了对比,结果表明稀溶液中微量组分的汽液相浓度呈现二次多项式关系,无法使用全浓度相平衡模型和传统的Herry定律来描述,从而验证了浓度尺度跨度较大体系进行多尺度相平衡研究的必要性。