论文部分内容阅读
为了达到节约资源、高品质和良好耐蚀性的目的,近几十年来双相不锈钢迅猛发展,尤其是以提高Mn、N含量取代价格昂贵Ni的节镍双相不锈钢。节镍双相不锈钢由体积分数相近的相和γ相组成,结合了二者优良的机械性能和耐蚀性作为结构材料广泛应用于诸多恶劣环境下,将来是最经济304奥氏体不锈钢的替代品。但在实际工况条件下,如工件的消应力退火处理、高温下长期服役、甚至从高温缓慢冷却、以及焊接热影响区处理不当、材料热加工等等,使工件经常处在300~1200℃区间。此时相界或晶界的析出相,/γ相比例以及奥氏体转变,使得显微组织改变,合金元素在两相分布不均匀,因此两相耐蚀性存在差异,影响整个材料的耐蚀性。本文对S32101在300~1200℃进行不同工艺的热处理,以获得所需组织。接着在Cl-、H+介质中进行电化学腐蚀:动电位扫描、双环动电位电化学再活化(DL-EPR)和电化学阻抗谱(EIS)。最后采用第一性原理解释选择性腐蚀机制。研究结果表明:S32101在300~900℃时效处理2h后水淬。从金相显微组织来看,这一温度区间组织上主要是温度达700℃邻近区段时,相会发生共析转变,产生析出相(碳氮化物和二次奥氏体)。随着时效温度从300℃升温,显微硬度逐渐增加;耐蚀性呈现抛物线型下降,电化学腐蚀过程中形成的钝化膜致密性逐渐变差。温度达700℃时,显微硬度最大,耐蚀性最差。温度继续升高到900℃,显微硬度值略微下降;耐蚀性有所提高,钝化膜致密性提高。700℃进行不同时间的时效处理后,随着时效时间延长,析出相在/γ相界或相晶内析出且逐渐长大并向相扩散,析出相越来越多,显微硬度呈线性增加;耐蚀性呈线性下降,钝化膜致密性越来越差,最终不仅整个相被腐蚀,而且γ相的晶界也被腐蚀且明显变粗。S32101在950~1200℃保温1h后水淬。从金相显微组织来看,这一温度区间组织上主要是、γ相的相对量的变化,并伴随着各种合金元素在各相中的重新分布,因而也会对耐蚀性产生影响。Cl-腐蚀环境下:温度从950℃升高到1200℃,点蚀均先发生于/γ相界面,并逐渐向相扩展,最终相被腐蚀。具体来看各个温度区间的耐蚀程度又各不同。温度从950℃升高到1050℃,/γ相比例对耐蚀性起主导作用:随着温度升高,γ相逐渐被溶解,点蚀优先在/γ相界形核逐渐向相蔓延至整个相被腐蚀,直至γ相终止,点蚀程度逐渐减弱。当温度超过1100℃,/γ相比例和γ相的溶解和析出共同影响耐蚀性:1100℃时铁素体中局部区域由于奥氏体的溶解出现了一些非常小尺寸的细条状奥氏体分布于铁素体晶界上,点蚀在/γ相界形核,腐蚀程度最严重;温度继续升高时,这些小尺寸的细条状奥氏体将继续甚至彻底溶解;当温度达到1150℃以上时,由于冷速较慢会由相内的晶界处析出细小针状或不规则形状的二次奥氏体γ2,点蚀在/γ2相界形核,然后同时向相和γ2扩散,γ2尺寸较小优先被腐蚀,再向整个相扩散,直至γ相停止。H+腐蚀环境下:腐蚀发生在/γ相界和γ晶界。原子层次构建的Fe-Cr-Ni、Fe-Cr-Mn结构模型来看,对应的fcc、bcc两种结构均为热力学稳定的结构。从费米能级处态密度来看,对于Fe10Cr4NiMn(2101)体系中,fcc结构γ相的费米能均低于bcc结构相,说明γ相的电化学活性低于相的,即γ相耐蚀性高于相,相将被腐蚀。对于Fe9Cr4Ni2Mo(2205)体系中,fcc结构γ相的费米能稍高于bcc结构相,说明γ相的电化学活性稍高于相的,即γ相耐蚀性稍低于相,γ相将被腐蚀。从2101和2205中、γ相费米能处两相的能量差来看,分别为17.5electrons/eV、0.8electrons/eV,说明2101的能量差高于2205的,即同样条件下,2205的耐蚀性远高于2101。体系加入N和Mo后费米能降低,说明电化学活性减弱,即耐蚀性提高,因此可以添加Mo、N或提高N的溶解度的合金元素来提升材料的耐蚀性。