论文部分内容阅读
近年来,第五代移动通信技术(5G)和物联网技术(Internet of Things,IOT)得到了快速发展,为用户提供实时、快速、高精度的定位服务以及可靠、连续的导航服务是当前和未来通信网络关键且必备的基础能力。全球卫星导航系统(Global Navigation Satellite System,GNSS)在室外及空旷场景下拥有非常好的定位性能,能够满足大多数用户的需求。但是,在遮挡物繁多且复杂的室内区域、热点丰富且人员密集的大型商超区域以及高楼林立的城市峡谷区域,提供实时、无缝、高精度的位置服务仍然是一个亟待解决的问题。超密集组网技术(Ultra-Dense Network,UDN)和设备到设备技术(Device-to-Device,D2D)作为面向5G移动通信系统的关键候选技术,能够减少无线信号的非视距(Non Line of Sight,NLOS)传播以及实现节点间的双向通信和信息共享,为协同定位方案的实施提供技术支撑。本文研究面向移动通信网络的分布式协同定位问题,具体工作如下:首先,针对接收信号强度指示(Received Signal Strength Indication,RSSI)的测距模型参数随动态环境的变化导致测距误差大的问题,研究了无线信号传播特性,提出了环境自适应的RSSI测距模型(RSSI-based Environment Adaptive Ranging Model,REARM)。REARM 利用锚节点或已知位置的目标节点的位置冗余信息,实时地、动态地、周期地更新RSSI测距模型参数,并将其广播到协同网络中,辅助其他节点的测距。目标节点利用高斯混合滤波处理后的RSSI值和周期变化的测距模型参数进行测距。实测结果表明,采用本文所提的REARM模型的WLS定位算法比采用固定模型参数的WLS定位算法的定位精度提高了 23.73%,在时变的环境下,REARM仍能保持较好的测距性能,增强了测距模型对时变环境的鲁棒性。然后,在研究了前文中所提出的自适应环境的RSSI测距模型的基础上,针对D2D通信网络的协同定位的目标函数结构复杂且非凸,传统的协同定位算法很难获得最优定位解的问题,提出了基于分类粒子群优化(Classification Particle Swarm Optimization,CPSO)的分布式协同定位算法。CPSO算法根据代价值将粒子划分为近距离粒子、中距离粒子和远距离粒子,并给不同种类的粒子设置不同的惯性权重和学习因子,从而增强算法的寻优能力,有效提高定位精度。为了降低D2D通信网络的链路数,本文提出基于克拉美罗下界(Cramero Lower Bound,CRLB)评估的节点发送优选机制,在发送端进行节点优选,阻止了位置估计不可靠的伪锚节点的位置信息传播。仿真结果表明,本文所提的基于CPSO的分布式协同定位算法在NLOS环境下,比经典的分类粒子群优化算法的定位精度提高了 25.3%,并在不损失协同定位精度的情况下,D2D通信网络的平均链路数减少了 11.17%,有效地降低了网络的通信量。