【摘 要】
:
尽管计算机断层扫描(Computed Tomography,CT)给医生诊断带来了所见即所得的支持,但是其高剂量可能带来的健康危害一直受到研究者高度关注。为此,使用低剂量来进行断层成像成为首选的解决办法。然而,放射剂量的降低往往会导致大量噪声的引入,进而影响医生的诊断。因而,如何在降低辐射剂量的同时有效地提高图像质量成为当前CT重建技术研究的重要挑战。一般CT重建涉及到两个域:投影域(Sinogr
论文部分内容阅读
尽管计算机断层扫描(Computed Tomography,CT)给医生诊断带来了所见即所得的支持,但是其高剂量可能带来的健康危害一直受到研究者高度关注。为此,使用低剂量来进行断层成像成为首选的解决办法。然而,放射剂量的降低往往会导致大量噪声的引入,进而影响医生的诊断。因而,如何在降低辐射剂量的同时有效地提高图像质量成为当前CT重建技术研究的重要挑战。一般CT重建涉及到两个域:投影域(Sinogram数据)和图像域。有鉴于此,目前研究者在两个域都有相应的思考。一般来说,Sinogram域旨在从统计学及物理学的角度来求解重建的映射问题,而图像域则是从计算机视觉角度来寻找解决办法。考虑到整个重建过程事实上涉及了投影和图像两个域的信号再处理过程,以往的单域处理存在先天的不足。虽然近两年有研究针对双域进行处理,但由于其映射过程未考虑到信息加工的不对等性,力图采用单一的方法解决复杂问题,由此导致重建结果存在不确定的干扰。事实上,重建技术的出口即是视觉效果的改善。那么,如何构建视觉效果与工具之间的内在联系成为研究的核心问题。本研究以重建具有良好视觉效果的低剂量CT为研究目标,针对目前单域重建所存在的噪声、伪影残留问题以及迭代算法计算消耗较大等局限性,具体做出了如下探索:1、针对单纯采用单尺度卷积方式在Sinogram域进行特征映射往往会导致相关细节丢失的问题,提出一种多感受野残差卷积方法(S-DRN),用以学习一种针对Sinogram数据的多尺度、非线性映射方法,以期尽可能保留完整的上下文信息。2、目前,多数已有图像域重建方法采用均方差损失函数以期达到全局降噪的效果,然而从实验效果来看却往往矫枉过正(结果过度平滑),并且即便采用VGG损失函数,也无法避免在结果上引入与目标CT图像无关的特征。究其原因,以上所述损失函数主要考虑了方法迁移的可行性,但是缺乏对于CT数据差异化的考虑。比如,VGG损失函数以自然界的纹理特征为先验知识,显然与CT图像的视觉多样性存在差距。为此,本研究提出了一种与CT纹理特征紧耦合的特征提取网络(FEN),并融合上述损失函数在全局特征恢复方面的优势,构建了一种可训练权值的融合特征损失函数。3、面向现有神经网络算法由于缺乏对所提取特征全局相关性的考虑而导致所重建结果存在不同程度边缘模糊的问题,本研究提出了一种改进型残差编解码网络(SRED-Net),即利用自注意力机制来提高特征的全局相关性感知能力,最终达到恢复纹理细节的目的。综上投影域与图像域的创新思考,本研究设计并实现了一种纹理引导的双域映射网络(TADDM-Net),充分融合了投影域和图像域双域的信息。经在公开的AAPM-Mayo-Clinic数据集验证,实验结果表明,S-DRN能够有效地保留Sinogram信息并去除一定程度的条纹伪影,SRED-Net能够在降噪和纹理还原之间达到良好的平衡。进而,与现有的双域方法进行对比,根据实验结果可以得出结论,本文提出的TADDM-Net在Haralick指标上有大幅提高。且从直观视觉观察,本方法能够较好地保留Sinogram域和图像域双域的有效信息,同时实现纹理最大程度的视觉效果恢复,从而能够更好地满足医生诊断要求。
其他文献
在空间环境中,液态合金处于热力学亚稳态,这非常有助于研究深过冷熔体的材料结构和热物理性质。受限于成本技术等原因,研究者通过构建静电悬浮结合落管装置模拟空间环境,同时使用高速摄像机捕捉深过冷熔体的下落图像,以研究其熔凝过程。但由于图像获取设备曝光时间等硬件限制,拍摄到的深过冷熔体图像分辨率较低,不利于进一步研究其热物性和凝固界面等性质。使用超分辨重建等软件设计方式可以更准确重构图像轮廓信息,有效提升
缺陷的产生是光刻工艺中不可避免的,主要包括光刻材料的物理特性和工艺因素引入的各种缺陷,以及随着特征尺寸不断缩小而使实设计与制造不完全匹配引入的成像缺陷等,在一定程度制约着芯片制造业的发展。目前随着集成电路进入亚纳米技术节点,可识别的最小缺陷越来越精细,这给光学和电子束缺陷检测系统带来了挑战。缺陷是芯片良率的主要影响因素之一,本研究涉及的缺陷包括固体残留、坍塌、水渍污染。这些缺陷特征跨度大,对设备的
激光雷达能够采集场景的3D点云数据,可快速、准确的得到被测量物体的深度及重建目标物体的几何模型,而光学相机可对场景采集具有丰富细节的高清晰度2D可见光图像数据。激光点云与可见光图像的融合能够结合二者的优势,使只能表现物体轮廓的3D点云数据具有真实的颜色,大大提升可视性,在三维场景重建、环境交互等领域中发挥了重大作用,从而促进云景观、娱乐交互、自动驾驶以及无人设备等领域的发展。为了标定设备以及提高精
城市化进程的不断加快,使得城市用地越来越紧张,且随着大量工业化建筑的急剧增加,生态系统被破坏,环境恶化,能源短缺,城市公共空间缺失等问题随之出现,人类面临着严峻的生存危机。在此背景下,人们把追求生态环境效益作为城市设计的主要目标,巧妙的利用和顺应自然环境、与大自然密切联系着的覆土建筑逐渐成为推动生态建设的一股中坚力量。覆土建筑从古代的穴居到近代的窑洞,再到当代的公共建筑,其适用范围越来越大。因此,
通过分析唇部动态识别出说话者的表达内容是唇语识别的基本目的,其在人机交互领域是广受关注的研究项目。由于传统唇语识别模型具有速度慢,训练难度大的特点,在基于不同场景的唇语识别技术上需要大量的人工设计与经验性处理。所以本文选择基于深度学习建立唇语识别模型,但是在资源紧凑的设备上,大部分性能优异的卷积神经网络都无法展示自己的高效识别能力。因此,卷积神经网络的压缩与加速成为众多学者的热门研究课题,经过网络
水下鱼类识别在合理开发渔业资源,维持生态平衡等方面有大量的应用需求,开展水下鱼类识别的研究具有广阔前景。然而受限于鱼类数据集规模通常较小、鱼类特征复杂等因素,使用既有鱼类识别方法获得的结果往往存在识别精度不高、检测速度慢的问题。为解决上述鱼类识别挑战,本文对比分析了目标检测算法的网络架构,基于深度学习技术设计了两种方法,并通过对比实验验证了模型的有效性。本文的主要研究内容如下:针对如何提升水下鱼类
随着近年来伺服技术的不断改进,多轴同步系统的应用越来越广,充分考虑刚度、阻尼和质量等影响机械系统动态性能的因素,建立一个高精度的电火花龙门式机床多轴同步系统,对电火花机床等数控设备的开发与生产具有重要意义。面对目前多轴同步控制存在的同步性能差,易因外界扰动失去其稳定性等缺陷,本文针对电火花加工龙门式机床,根据其电加工摇动、平动以及Z轴多次往复的加工特点,对机床的X、Y、Z轴均采用双轴同步控制,通过
随着深度学习及人工智能的发展,唇语识别技术在计算机视觉及人机交互领域有着深厚的发展前景与应用需求。尤其是在利用自动唇部识别技术来改善听力障碍者和发音障碍者的社交互动方面,更是人工智能在医疗保健和康复中最有前途的应用之一。所谓唇语识别技术就是通过嘴唇视觉图像的动态变化来识别主要人物表达的内容。当前阶段,唇语识别技术主要停留在对算法以及计算机性能的研究上,很少将其真正的运用到实际生活场景中。因此,本研
地震勘探作为最有效的油气勘探方法之一,一般包括地震资料采集、地震资料处理、地震资料解释三个阶段。在实际采集工作中,存在由于地表起伏和低降速带的变化而造成的信号干扰,为此,首先需要对地震资料进行静校正。初至拾取是得到合理静校正结果的先决条件,它为静校正过程提供了进行后续计算所需的静校正量。现有初至拾取方法主要分为自动化和半自动化方法。一般而言,对于数据单一、噪声干扰小的资料,现有自动方法多数可以快速
人脸验证技术是近年来计算机视觉最为热门的研究方向,其被广泛应用于各种身份验证场景。目前对于人脸验证的研究已经发展到了较为成熟的阶段,现有算法在LFW人脸验证数据集上已经达到了99%的准确率。数据是深度学习算法的核心,取得这样优秀成绩的算法大部分都是基于上百万的人脸数据的前提下训练的。然而在实际应用中,并不是所有的场景都能够获取到大量的脸人图片训练样本的,例如人证比对和人脸亲属关系验证都是目前人脸验