【摘 要】
:
以甲胺基铅卤化物(CH3NH3PbX3)为代表的有机-无机杂化钙钛矿具有大的光吸收系数、长的载流子扩散长度,使其在光电探测器的应用方面显示出了巨大的潜力。同时,石墨烯作为一种具有超快响应速率和超高载流子迁移率的材料,通常被用作载流子传输层与钙钛矿复合,以增强钙钛矿中光生电子和空穴的迁移率和扩散长度。然而,石墨烯层的引入会导致光电探测器具有较高的暗电流。为了解决该问题,本文提出了一种利用探针在石墨烯
论文部分内容阅读
以甲胺基铅卤化物(CH3NH3PbX3)为代表的有机-无机杂化钙钛矿具有大的光吸收系数、长的载流子扩散长度,使其在光电探测器的应用方面显示出了巨大的潜力。同时,石墨烯作为一种具有超快响应速率和超高载流子迁移率的材料,通常被用作载流子传输层与钙钛矿复合,以增强钙钛矿中光生电子和空穴的迁移率和扩散长度。然而,石墨烯层的引入会导致光电探测器具有较高的暗电流。为了解决该问题,本文提出了一种利用探针在石墨烯上刻划次级沟道的方法降低了器件的暗电流。同时,在沟道处实现了水平“石墨烯-钙钛矿(CH3NH3PbI3)-石墨烯”肖特基结的构筑,促进了光生载流子有效分离。这种带有次级沟道的石墨烯-钙钛矿-石墨烯(Graphene-Perovskite-Graphene,GPG)结构光电探测器的成功设计提升了器件光电性能。基于此,本论文的具体研究工作内容如下:首先,采用化学气相沉积(CVD)和一步反溶剂旋涂法分别制备了少层石墨烯薄膜和高结晶CH3NH3PbI3薄膜。利用光学显微镜、扫描电子显微镜、透射电子显微镜、拉曼光谱、X射线衍射仪、紫外分光光度计和光致发光光谱仪等仪器对石墨烯的形貌、层数、透光率等信息以及CH3NH3PbI3薄膜的光吸收能力、载流子寿命和物相组成等特性进行了表征。其次,本文对GPG光电探测器进行结构构筑与机理分析。使用探针在石墨烯上刻划次级沟道并旋涂CH3NH3PbI3薄膜。CH3NH3PbI3在沟道处与接触面两侧的石墨烯形成了水平结构的“石墨烯-钙钛矿-石墨烯”肖特基结,上层CH3NH3PbI3与下层石墨烯形成垂直方向“石墨烯-钙钛矿”肖特基结,本文分析了两种肖特基结的共同作用机制。最后,测试了GPG光电探测器的光电性能,研究了GPG光电探测器的光谱响应特性、光功率响应特性,并探究了CH3NH3PbI3吸光层厚度、沟道数量对光电探测器光电性能的影响。研究表明,GPG光电探测器具有较高开关比和稳定性,在波长为452 nm、光功率密度为1.83 m W/cm~2的测试条件下,光电流为6.60μA,响应达24.04 m A/W,对应的开关比和探测率分别为2.64×10~3和3.55×10~9 Jones。同时,该器件在柔性基底上也保持了良好的性能,在弯折角度30°、弯折100次并长时间测试(10 min)的条件下,柔性器件的光电流保持了原有性能的90%,证实了器件具有良好的耐弯折性以及在柔性领域具有广泛的应用前景。
其他文献
有机太阳能电池具有机械柔性优异、可印刷涂布等优势,是近年来的研究热点。光活性层是有机太阳能电池的核心部分,其化学性质和成膜行为将直接影响有机太阳能电池的效率及稳定性。本文以非富勒烯光活性层为研究对象,研究了非富勒烯活性层在涂布过程中常引入的酸、碱环境下的化学稳定性;然后,针对活性层薄膜在刮刀涂布中常见的膜层分布不均匀的问题,提出了一种稀释溶液进行多次刮涂的解决方案,主要结果如下:首先,对于非富勒烯
丹江口水库位于汉江中上游,横跨鄂、豫两省,是我国南水北调中线供水工程的水源地,丹江口水库的供水有效缓解了我国北方水资源短缺的局面。深入研究丹江口水库未来的入库径流,对于水库防洪和兴利调度以及保证南水北调的供水安全极为关键。本论文以丹江口水库为研究对象,分析了丹江口水库入库径流特性和演变规律。在此基础上,建立了多元线性回归模型(MLR)、人工神经网络模型(ANN)、随机森林回归模型(RFR)、支持向
物联网的兴起促进了信息技术的进步以及智能移动设备的发展,但大量的敏感信息在智能平台上传播,对个人隐私及信息造成了重大的安全隐患。传统的硬件加密方法依赖于存储在非易失性存储器中的数字密钥,容易受到侧信道攻击等物理攻击,存在密钥泄漏的风险,而施加保护电路则大大增加了硬件成本。因此轻量级的物理不可克隆函数(Physical Unclonable Function,PUF)作为一项新兴的硬件信息安全技术引
我国经济不断发展,电力需求持续增加,随之带来的短路电流超标问题迫切需要得到解决。装设超导限流器是限制短路电流的有效措施,磁通约束型超导限流器凭借高耦合、低损耗的并联电感线圈,能快速响应投入阻抗进行限流,可有效降低对线路断路器的容量要求,确保短路故障被可靠切断。为推进磁通约束型超导限流器的实际应用,需分析研究该型限流器的各项工作特性,并对该型限流器的性能表现进行实验验证。本文在调研超导限流器研究现状
超表面是具有亚波长厚度的超材料,具有优异的光场调控特性,能够对入射光的相位、振幅及偏振态等进行调控,同时,超表面较小的尺寸便于小型化与集成化。早期超表面吸收器一般采用金属材料制作,通过设计不同的金属结构可以得到单带或多带的吸收特性,但是,金属材料的沉积与CMOS工艺不兼容,而且器件吸收区域大多位于金属材料中,这些特点限制了其进一步的应用。在近红外波段现有的传感、探测等器件中,响应度是一个重要的性能
有机溶剂纳滤(OSN)是压力驱动的,用于从有机溶剂中分离分子量为200-1000g/mol溶质的膜分离过程。传统的以聚酰胺(PA)作为选择层的薄膜复合(TFC)膜是目前OSN膜的主要类型,对于TFC OSN膜来说,在有机溶剂中具有良好的耐溶剂性能是能维持其在实际工业中稳定运行的前提,PA选择层通常在大部分有机溶剂中具有很好的耐受性因而可以满足在OSN应用中的稳定性需求,但是基膜的耐溶剂性能也是决定
海岛作为海洋开发的支点和平台,开发前景十分广阔。为了实现海岛的充分开发利用,需要加强电力设施建设,保障海岛供电可靠性。考虑到海岛及其邻近海域蕴藏大量的太阳能、海上风能、潮汐能等可再生能源,如果得到有效开发,将有望实现海岛用能的高度电气化及清洁化。然而,由于可再生能源发电存在间歇性和随机性,对海岛微网的运行造成极大的挑战。因此,亟需考虑海岛自身地理条件,因地制宜,开发具有高稳定性的海岛新型发电/储能
继电保护的可靠运行是大电网安全稳定运行的前提条件,随着电力系统的不断发展和保护装置技术的更新换代,新建、扩建和技改的输变电设备启动投运工程越来越多,相应保护运行风险管控技术的不足愈发突出。作为电网架构中的核心元件,变压器投运时的保护运行风险管控工作尤为重要,系统中多次出现启动投运变压器时临时保护误动导致投运失败的情况,严重时甚至影响到了上一级电网的安全稳定运行,其亟待解决的两个关键技术问题则是变压
覆冰问题一直以来都是业界的研究重点,覆冰造成的绝缘子覆冰闪络、导线覆冰舞动、倒杆倒塔问题,严重影响电网的安全稳定运行,甚至会造成不可估量的经济损失和社会影响。近年来,仿生超疏水材料因具有较好的接触角和水滴滚动特性,逐渐成为业界的研究热点之一,而其防冰性能也成为科研人员关心的重点问题。探究超疏水材料的防冰性能具有重要的工程应用价值。本文首先制备了HMDS(六甲基二硅氮烷)改性超疏水材料,将其覆冰剪切
人工智能技术的蓬勃发展除了得益于深度卷积神经网络的算法革新和大数据供给,硬件计算性能的不断提升也具有巨大的推动作用。其中,基于FPGA的硬件加速器设计凭借其高性能、低功耗、可重构等优势,近年来引起业界的广泛关注,如何充分利用FPGA的可编程资源设计出高效的加速器成为当下的研究热点。本文选择基于FPGA的通用深度卷积网络加速器设计作为研究方向,首先研究了通用深度卷积神经网络加速器优化设计的关键技术,