【摘 要】
:
软体机器人一般具有高度的主动灵活性和被动柔顺性,这使得其在一些非结构化环境中具有很好的适应能力。软体机械臂是软体机器人中的典型形式,一般为细长型结构;其在狭窄通道中的适应能力较刚性机械臂更强,尤其是在发动机检修、微创介入性手术等狭窄场景。目前,已经发展出气压驱动、线驱动、智能材料驱动等不同种类的软体机械臂。各种驱动方式均有其局限性,气压驱动往往控制复杂,线驱动一般变形较小,智能材料驱动尚处发展阶段
论文部分内容阅读
软体机器人一般具有高度的主动灵活性和被动柔顺性,这使得其在一些非结构化环境中具有很好的适应能力。软体机械臂是软体机器人中的典型形式,一般为细长型结构;其在狭窄通道中的适应能力较刚性机械臂更强,尤其是在发动机检修、微创介入性手术等狭窄场景。目前,已经发展出气压驱动、线驱动、智能材料驱动等不同种类的软体机械臂。各种驱动方式均有其局限性,气压驱动往往控制复杂,线驱动一般变形较小,智能材料驱动尚处发展阶段。与柔顺性相矛盾的是,软体机械臂有时也需要较大的刚度来承担较大的负载,因此变刚度技术成为软体机器人领域的研究重点和难点。本文采用驱动精度较高的线驱动方式,创新设计机械臂本体结构,使本体结构具有大范围弯曲和伸缩能力。本文对该类型机械臂的运动学、静力学、运动控制、形态感知、运动控制以及变刚度等进行研究,主要研究内容如下:首先综合出一种新型的线驱动软体臂变形单元—基于弹簧骨架的可伸缩、可全向弯曲结构。将弹簧式骨架作为机械臂的本体的支撑构件同时也作为驱动线的导向构件,该变形单元的运动空间大、结构简单可靠、运动精度高。本文对该变形单元的运动学和工作空间进行了深入研究,从而为后续机械臂的相关研究打下基础。其次,基于卡氏定理建立了该软体臂关节的静力学模型。基于矢量力学对弹簧结构体进行受力分析,得到其应变能的解析表达式且得出软体臂的应变能与其扭转运动无关的结论;在此基础上采用等效方法简化计算流程,给出软体臂关节的应变能表达式简化形式,基于卡式第二定理计算得到软体臂的等效轴向和弯曲刚度公式,给出了软体机械臂单元姿态与驱动力之间的函数关系。基于运动静力学模型完成软体臂关节的优化设计。建立两段软体机械臂的正运动学和逆运动学模型,为机械臂控制提供理论基础,分析了可伸缩关节相比于传统的不可伸缩关节在工作空间和灵活性方面的优势。基于伪刚体法,提出一种两段可伸缩软体臂逆运动学的解析求解方法并进行了运动规划验证,该模型的求解速度能够胜任机械臂实时运动控制要求。搭建机器人系统物理样机,完成机械臂位姿控制实验。提出一种基于电感量测量的高精度柔性应变传感器原理并将其运用于软体机械臂的反馈控制—将传感器阵列于机械臂外围,赋予了软体机械臂在与外界环境交互条件下的形状自感知能力,完成软体臂的位姿反馈控制实验。针对两段软体臂关节串联组成6自由度软体机械臂的刚度不足的问题,设计一种基于固液相变的刚度控制方案。将LMPA(Low Melting-point Alloy,低熔点合金)包围于铜质螺旋盘管周围,组成高效固液相变控制结构,实现了软体臂的快速大范围刚度调控。变刚度能力使机械臂在工程应用更能发挥其优势。
其他文献
随着智能技术与机器人技术的发展,新一代人机系统逐渐从图像、语音等单纯信息层面的人机交互过渡到在位移、力层面的物理交互。面向人体增强,助力外骨骼技术集成了运动生理、计算机科学、机器人技术等多个学科,受到研究者的广泛关注。助力外骨骼机器人辅助人而非替代人,其助力策略在于根据用户的运动意图和生理状态提供定制化的高效辅助。而作为个体化辅助的参考,人体运动意图以及生理状态的时敏、鲁棒感知是新型助力外骨骼机器
运行在大气层中的高速飞行器,如再入航天器、临近空间高超声速飞行器和火星探测器等,由于与大气层的剧烈摩擦作用,表面会产生一层致密的等离子体包覆,通常被称为等离子体鞘套,它会影响电磁波的传播,导致通信“黑障”现象。为了精准控制和跟踪飞行器,确保飞行安全,缓解/消除通信“黑障”具有重大意义。采用磁场调控等离子体鞘套缓解“黑障”是一种具有创新性和应用前景的方法。然而,要使磁场发挥作用,需要较大尺度特斯拉量
在当前及未来相当长时期内,石油依然是全球最主要的一次能源。然而进入21世纪以来,原油供应的重质化与劣质化(即高密度、高硫、高酸、高残炭、高金属含量等)程度不断加剧,且重质原油的全球储量高达石油总储量的70%。重质原油以及原油经分馏炼化后剩下的残余物(常压渣油、减压渣油等)被统称为重油,2020年我国原油加工量约8.3亿吨,其中重质原油占比高达60%以上,且原油加工所产生的渣油约3亿吨,因此重油炼化
双逆变器驱动的开绕组永磁同步电机系统具有更高的直流母线电压利用率,能够在母线电压受限的情况下大幅扩展电机的调速范围,在交通用电机等需要宽调速范围的场合具有广阔的应用前景。共直流母线型双逆变器驱动的开绕组永磁同步电机面临零序电流抑制的问题,传统的基于PI/PR调节器的电流控制方法参数众多、设计难度大、开关频率高且控制性能有待提升。本文在分析并改进传统控制方法的基础上,研究基于模型预测控制的电流控制方
电子元器件在服役过程中的质量问题已成为星、箭、弹发射延期和运行事故屡次发生的主要原因。航天电磁继电器又是电子元器件门类中质量最差的器件之一。结构和工艺繁杂所必然带来的批次制造产品寿命周期质量一致性(初始时刻和退化失效过程)差异,是导致航天电磁继电器质量较差的重要原因,也是科研人员、航天电磁继电器厂家和航天电磁继电器用户关注的共性基础问题。通过提高制造工序精度抑制机加、装配和调试过程的多源不确定性波
21世纪是太空资源争夺战时代,面对与日俱增的太空活动,空间机械臂发挥着越来越重要的作用。空间目标捕获是太空操作的第一步,尤其是对于大惯量、重载荷目标的捕获,宇航员显得束手无策,而空间机械臂在此方面的优势凸显。本文针对冗余空间机械臂在轨捕获自旋卫星的策略展开研究,以实现机械臂以较高精度、较小扰动成功捕获动态卫星。为充分发挥空间机械臂的灵活性和可操作性,本文采用7自由度关节偏置冗余臂,提出一种基于解析
电力线通信(Power Line Communication,PLC)是电力物联网信息交互的最有效通信方式之一,但同时电力物联网中通信设备数量的激增和数据传输需求的爆发式增长也会对PLC的吞吐量、速率、连接密度、安全性等性能提出更高的要求。非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术允许多用户共享时频资源,频谱利用率高,有望满足高吞吐量、大连接、高速
移动操作机器人将移动平台的移动能力和机械臂的操作能力进行了高效结合,因此在物料搬运、自动上下料、大型零件的表面处理以及智能运维等领域具有巨大的潜力,但针对单一任务对移动操作机器人进行编程的传统方法不仅技术上的门槛和成本高,且效率低下。机器人模仿学习技术的发展,让机器人的使用者可以按照自身的任务需求,通过示教实现机器人的性能提升和功能扩展,让机器人的应用摆脱了对使用者专业知识的依赖,不仅带来了机器人
永磁同步电机(PMSM)绕组电流中的PWM谐波导致电机产生高频振动与噪音,目前针对PWM高频噪音的抑制,主要从硬件与控制策略两方面着手,包括采用开关频率较高的宽禁带半导体器件、周期性或者随机性地改变载波周期、并联逆变器载波移相技术等,这些措施存在着抑制效果有限或成本较高的问题。本论文提出基于强耦合双支路拓扑的强耦合双支路PMSM及其驱动控制策略,通过改变两条支路中PWM谐波电流的相位差来抑制合成磁
外骨骼通过为穿戴者下肢关节提供辅助力矩以降低其代谢成本。随着关节电机、可穿戴式传感器的发展,助行外骨骼的应用愈发广泛。助行外骨骼采用识别并预测穿戴者的步态以使其运动超前于人体的策略完成主动助力。助行外骨骼主动助力策略的研究仍存在较为突出的问题:假定人体行走时双侧下肢的运动关于矢状面是对称的。然而,诸如环形行走和一步转弯等非直线步态在生活中占比极高且不可忽视。非直线步态中下肢潜在的非对称性会使得外骨