论文部分内容阅读
基于高频金融数据的已实现波动测度是现代金融计量经济学研究的一个热点.已实现波动测度具有无模型,计算方便且统计特性比较好的特点.但由于受市场微观噪音的影响,当抽样间隔增加时,其波动测度存在比较大的偏差,因此,研究微观噪音对已实现波动测度的影响,并设法消除这种影响是基于已实现波动测度的重要研究领域.我们的研究正是基于这样的理念,第一部分方法是通过引入一个参数对己实现波动和已实现双幂变差进行改进分析,第二部分是通过补全隔夜数据的影响从数据来源方面对已实现波动进行分析,第三部分是通过实验来检验噪声分离的效果,方法是由计算机生成随机的扩散过程以及不同水平的噪声序列,在此扩散过程中分别加入所生成的不同水平的噪声序列,探究并对比掺杂噪声序列的扩散过程与原扩散过程中,由于所选取的分析方法不同以及所选取的时间间隔不同等条件下所产生的影响与差异,并对比不同情况下各分析方法所得出的结论与原扩散过程结论之间的差异。通过第一部分我们分别对己实现波动和已实现双幂变差引入了参数c,通过用此参数与原已实现波动分别乘积得到新的已实现波动和已实现双幂变差序列,通过对比我们得出结论,引入参数c的波动序列与原序列相比具有更好的波动特性,同时也更接近真实波动。第二部分我们通过添加隔夜数据等,从而使用了更多的数据,是对已实现波动现有算法的一个补充,通过补充数据我们可以得出,补充后的数据使计算结果的精度提高了,能够更好的刻画日波动。第三部分我们通过实验对噪声进行了分离处理,并且将分离噪声后的序列与噪声序列一起与原序列做了MSE比较,结果表明,对噪声进行分离后得到的已实现波动序列更接近与原真实序列,与未对噪声进行分离的序列的MSE相比小了一个数量级,所以,我们对噪声分离的效果非常显著。