论文部分内容阅读
纳米TiO2是一种n型半导体,具有很强的光催化效率。其发生光催化氧化作用的原理是:在紫外光(λ<390nm)照射下,TiO2受到光激发形成光生空穴-电子对。在空间电场的作用下,空穴可以与电子发生分离,并分别与水和溶解氧作用生成OH·、H2O2和HO2·等活性氧类。这些活性氧类与有机物、细菌、病毒和细胞等发生光催化氧化作用,从而分解有机物和杀灭生物体。纳米TiO2因具有独特的光催化氧化能力以及无毒、化学性质稳定、成本低等优点而被广泛应用于涂料、生物医学、环境工程等很多方面。癌症是当今世界威胁人类健康的大敌,癌症发病率的不断提高要求研究人员不断地寻找新颖且有效的治疗方法,纳米TiO2光催化杀伤癌细胞是一种新的探索中的治疗癌症的方法。已有的研究成果证明,纳米TiO2有望成为能有效治疗癌症且对人体毒副反应小的光敏药物,所以探索纳米TiO2对癌细胞的光催化杀伤作用具有理论意义和实用价值。但是目前纳米TiO2用于光催化杀伤癌细胞的研究还较少,还有一些问题需要做进一步的研究和探索。其不足之处表现为:(1)纳米TiO2表面光生电子—空穴对的复合几率较高,其光催化杀伤癌细胞的效率还较低,需要较大浓度的纳米TiO2,但是过高浓度的光敏剂不适宜用于人体治疗;(2)正常细胞在紫外光照下也可以被纳米TiO2杀死,所以需要通过提高纳米TiO2对肿瘤细胞的“靶向性”吸附能力来增强其对肿瘤细胞的杀伤效果,减少其对正常细胞的副作用。为了克服上述缺点,本论文采用化学修饰的方法来提高纳米TiO2光催化杀伤癌细胞的效率和选择性。同时还研究了纳米TiO2及其复合物在生物电化学领域中的其它用途,主要研究内容有:1.采用沉积-沉淀法(DP)和硼氢化钠还原法合成了Au纳米粒子修饰的P25TiO2(Au/P25)和Au纳米粒子修饰的锐钛矿型TiO2(Au/锐钛矿TiO2),首次深入探讨了Au纳米粒子修饰后纳米TiO2对癌细胞的杀伤作用。实验结果表明:沉积-沉淀法和化学还原法均可实现Au纳米粒子在TiO2样品表面的均匀沉积;黑暗中TiO2纳米粒子和Au/TiO2纳米复合物对LoVo细胞几乎没有毒性;在紫外光激发下,纳米TiO2(P25或锐钛矿型)可以通过光催化氧化作用对LoVo细胞产生杀伤作用,而且锐钛矿型TiO2对LoVo细胞的杀伤效果明显比P25 TiO2更好;Au沉积能有效提高纳米TiO2的光催化效率。当加入50μg/mL的P25 TiO2或锐钛矿TiO2时,紫外光(光强1.8 mW/cm2)照射100min后,分别有40%和60%的LoVo细胞被杀死。当加入50μg/mL的2 wt%Au/P25 TiO2和2 wt%Au/锐钛矿TiO2时,紫外光(1.8 mW/cm2)照射100min后,杀伤LoVo细胞分别达到100%和93%。而且Au沉积对光催化效率的提高效果受到沉积量的控制,Au的最佳沉积量为2%;从机理上分析,Au/TiO2对癌细胞光催化杀伤的作用主要来源于紫外光激发下Au/TiO2表面生成的活性物种羟基自由基(·OH)。2.首次将癌胚抗原单抗与纳米TiO2粒子进行结合,提出利用癌胚抗原单抗与肿瘤细胞的特异性结合将纳米TiO2粒子导向癌细胞表面,再利用电穿孔的方法促使它们进入癌细胞中,然后用紫外光照射,使TiO2纳米粒子在癌细胞内部产生光催化氧化作用杀死癌细胞。紫外-可见吸收光谱和荧光光谱证明了抗体在纳米TiO2表面的吸附,共聚焦荧光显微镜图像表明了抗体.纳米TiO2复合物与LoVo癌细胞的选择性结合。而细胞毒性实验结果显示:无光照下纳米TiO2悬浮液对LoVo癌细胞和正常TE353.sk细胞均无明显的细胞毒性;在紫外光(强度为4mW/cm2)照射60分钟后,仅用纳米TiO2时对LoVo细胞的杀死率为47%,而用抗体-纳米TiO2复合物时癌细胞的死亡率上升为61%;当抗体-纳米TiO2复合物结合了电穿孔技术后,具有最高的癌细胞杀伤效率和选择性,紫外灯(强度1.8 mW/cm2)光照90 min后,LoVo癌细胞全部被杀死,而正常TE353.sk细胞仍然有61%的存活率。综上所述,本论文利用抗原和抗体之间的特异性反应和电穿孔技术实现了纳米TiO2粒子与癌细胞的选择性结合,提高了纳米TiO2粒子对癌细胞的光催化杀伤效应。3.以三嵌段高分子非离子表面活性剂(EO20PO70EO20,P123)为结构导向剂,采用模板组装法合成了孔径分布均一、比表面积高的有序介孔二氧化钛材料,并以大肠杆菌(E.coli)为实验对象,首次研究了该有序纳米介孔TiO2对大肠杆菌的光催化杀菌效应。实验结果表明:合成的介孔TiO2具有较大的孔径(约6.5nm),且孔径分布较窄、比表面积(BET)为208m2/g,约为无表面活性剂时合成的TiO2(50m2/g)的四倍;制备的有序介孔纳米TiO2材料具有良好的光催化杀菌效应,光照60分钟后,大肠杆菌的存活率仅为10%,光照120min后,大肠杆菌的存活率几乎为零;随着有序介孔纳米TiO2量的增加,对大肠杆菌的杀死效率也提高;在一定的菌液浓度条件下,存在一个发挥杀菌效率最佳的TiO2量,本实验中TiO2的最佳浓度为1mg/ml。4.采用沉积.沉淀法合成了Au负载量为8 wt%的Au纳米粒子修饰的纳米TiO2复合物(AuNP-TiO2),并将其应用于固定辣根过氧化物酶(HRP),考察利用Au纳米粒子修饰的纳米TiO2复合物加速HRP与玻碳电极之间的直接电子传递行为,探索研制非媒介体型的过氧化氢传感器。实验结果表明:当纳米TiO2用Au纳米粒子修饰后,电极的反应电阻大大下降,TiO2/GC电极的反应电阻为1548 O,而AuNP-TiO2/GC电极的反应电阻为1134 O;Au在纳米TiO2上的修饰提高了HRP的电化学响应,HRP/AuNP-TiO2/GC电极的氧化还原峰电流大于HRP/TiO2/GC电极的峰电流;HRP/AuNP-TiO2/GC电极中的HRP对过氧化氢具有较强的催化作用,对H2O2具有快速地电流响应,能在小于2秒的时间内达到95%的稳态电流;HRP/AuNP-TiO2/GC电极具有较小的表观米氏常数KMapp(234μM),说明固定在AuNP-TiO2膜中的HRP显示了较高的酶催化活性和对过氧化氢的高亲和力;HRP/AuNP-TiO2/GC电极的重现性较好,对浓度为200μM过氧化氢连续测试6次,其相对标准偏差(R.S.D.)为4.3%。5.初步尝试以高压汞灯作为紫外线的光源,以纳米TiO2溶胶作为载体,采用简便的紫外光还原法制备了纳米Au/TiO2复合半导体粒子。用紫外—可见光谱,SEM和XRD进行了表征,证实了纳米Au粒子的形成,并采用提拉法将此复合溶胶固定在ITO基底上制备成薄膜,测量纳米Au/TiO2复合膜电极的光电流,考察纳米Au/TiO2复合膜的光电化学性质。实验结果表明:光电流起于345 nm,并在360 nm波长时光电流达到峰值,然后光电流值开始减小,当波长达到395 nm时,光电流会变得较弱;纳米Au/TiO2电极的光电流值明显大于没有修饰纳米Au的TiO2电极,当光的波长为360nm时,纳米TiO2膜电极的光电流值为23nA/cm2,而纳米Au/TiO2复合膜电极的光电流为37 nA/cm2。总体来说,纳米Au的修饰能显著提高TiO2电极光电响应,从而提高TiO2电极的光电转换效率。