论文部分内容阅读
生物质经热解转化形成的生物炭常被施入土壤,用于土壤改良、固碳以及污染土壤修复。但生物炭中存在一定量易发生迁移的纳米级颗粒物。同时,这些纳米级生物炭颗粒含有丰富的官能团和矿物组分,对土壤中的营养元素和污染物具有较高的吸附性能,因此可能协同它们迁移,造成土壤肥力流失,污染物进入地下水环境,引发二次污染。本论文以生物炭纳米颗粒为研究对象,首先探究不同环境因子条件下,生物炭纳米颗粒自身在真实土壤中的迁移行为与滞留机制,其次研究生物炭纳米颗粒对土壤中代表性营养元素磷(P)和代表性重金属镉(Cd)和铬(Cr)迁移行为的影响以及作用机制,最终为生物炭的土壤环境应用安全性评价提供科学依据。主要研究结果如下:(1)研究了不同环境因素条件下生物炭纳米颗粒在土壤中的迁移行为和滞留机制。结果表明:随离子强度从1.0 mM增加至50 mM,木屑生物炭纳米颗粒在水稻土中的迁移能力从35.9%降低至9.80%。通过DLVO理论计算可知,随着离子强度增加,木屑生物炭纳米颗粒和土壤介质之间的最大作用能减弱,导致木屑生物炭纳米颗粒的迁移能力降低。此外,高离子强度下木屑生物炭纳米颗粒更容易形成大的团聚体,从而滞留在土壤中。由于较高的电荷屏蔽效应,Ca2+对木屑生物炭纳米颗粒在土壤中迁移的抑制作用强于Na+。腐殖酸促进木屑生物炭纳米颗粒在土壤中迁移,且随腐殖酸浓度增加促进作用增强。这主要因为腐殖酸增强木屑生物炭纳米颗粒和土壤介质之间的静电斥力势能,并且在颗粒表面形成空间位阻能。两点动力学滞留模型能够较好地拟合木屑生物炭纳米颗粒的穿透曲线,因此可以通过迁移参数模型反演生物炭纳米颗粒的迁移行为,从而预测其在复杂环境体系中的迁移与归趋。(2)研究了生物炭纳米颗粒对P在不同类型土壤中迁移和滞留行为的影响机制。结果表明:木屑生物炭纳米颗粒可以促进P在酸性土壤中(水稻土和红土)的滞留。较单独P在水稻土(45.5%)和红土(78.9%)中的滞留量,木屑生物炭纳米颗粒存在时,P滞留量分别增加至56.3%和90.9%。这主要由于木屑生物炭纳米颗粒能稳定土壤中Fe/Al氧化物和溶解性有机物,降低Fe/Al氧化物结合态P和溶解性有机物结合态P的迁移。但对于碱性土壤(黄绵土和潮土),木屑生物炭纳米颗粒抑制了P在土柱中的滞留,滞留量降低了23%和18%。这主要因为木屑生物炭纳米颗粒促进了碱性土壤中Fe/Al氧化物的释放,增加了出流液中P浓度。此外,薄膜扩散梯度技术原位表征实验显示木屑生物炭纳米颗粒可以提高土壤中有效态磷量,但碱性土中的有效态P量远高于酸性土中有效态P量。(3)研究了不同环境因素条件下生物炭纳米颗粒对土壤重金属Cd迁移行为的影响及作用机制。结果表明:随着离子强度的增加,Cd在土壤中的迁移能力提高,主要因为阳离子与Cd竞争秸秆生物炭纳米颗粒和土壤颗粒表面吸附位点。生物炭纳米颗粒在迁移过程中可以作为镉的载体协同其在土壤中迁移。低离子强度(1.0 mM)时,出流液中结合态Cd(>99%)占主导,秸秆生物炭纳米颗粒促进Cd在土壤中迁移,且500°C制备的秸秆生物炭纳米颗粒对Cd的吸附能力较强,因此其对Cd的协同能力强于350°C制备的秸秆生物炭纳米颗粒;而高离子强度(10 mM)时,出流液中溶解态Cd(77.0%-95.2%)占主导,秸秆生物炭纳米颗粒吸附Cd且滞留在土柱中,因此抑制Cd在土壤中迁移。500°C制备的秸秆生物炭纳米颗粒对Cd迁移的抑制作用强于350°C制备的秸秆生物炭纳米颗粒。腐殖酸促进秸秆生物炭纳米颗粒的迁移以及对Cd的吸附,因此低离子强度时腐殖酸加强了秸秆生物炭纳米颗粒对Cd在土壤中迁移的促进作用,而高离子强度时腐殖酸加强了秸秆生物炭纳米颗粒对Cd在土壤中迁移的抑制作用。(4)研究了生物炭纳米颗粒对土壤变价重金属Cr(VI)迁移转化行为的影响和作用机制。结果表明:生物炭纳米颗粒促进Cr(VI)在土壤中的迁移;生物炭纳米颗粒具有供电子能力,在迁移过程中将Cr(VI)还原成Cr(III)并吸附在表面,协同其在土壤中迁移;秸秆生物炭纳米颗粒对Cr(VI)迁移的促进作用以及协同Cr(III)迁移的能力均强于木屑生物炭纳米颗粒。随着热解温度升高,生物炭纳米颗粒对Cr(VI)迁移的促进作用增强。此外,当热解温度从350°C升高至500°C时,木屑和秸秆生物炭纳米颗粒的供电子能力分别从0.75 mmol e-/(g生物炭)和0.66 mmol e-/(g生物炭)降低至0.28 mmol e-/(g生物炭)和0.24 mmol e-/(g生物炭),导致其将Cr(VI)还原成Cr(III)的能力减弱;同时木屑和秸秆生物炭纳米颗粒的迁移能力分别从48.4%和77.7%降低至28.9%和37.0%,因此,500°C生物炭纳米颗粒协同Cr(III)迁移的能力弱于350°C生物炭纳米颗粒。(5)进一步研究了铁复合生物炭纳米颗粒对土壤重金属Cd迁移行为的影响和作用机制。结果表明:由于土壤对Cd较强的吸附能力,单独Cd在土壤中基本不发生迁移;而铁复合生物炭纳米颗粒通过结合态Cd形式有效促进Cd在土壤中迁移,其迁移能力提高了27.1-95.5倍。较原始生物炭纳米颗粒对Cd的协同能力(1.28%-4.07%),铁复合生物炭纳米颗粒对Cd在土壤中的协同能力提高了约2.5倍。这主要由于生物炭纳米颗粒负载铁后,颗粒与Cd之间的静电作用、氢键络合作用以及π-π共轭作用加强。此外,铁复合生物炭纳米颗粒在红土中协同Cd迁移能力大于其在水稻土中的协同能力,这与红土的Fe/Al氧化物含量相关。铁复合秸秆生物炭纳米颗粒由于含有较多的矿物组分(如CaCO3、KCl),对Cd的吸附能力较强,因此其对Cd在土壤中的协同迁移能力强于铁复合木屑生物炭纳米颗粒。综上所述,生物炭纳米颗粒在土壤中自身会发生迁移,并且可以作为载体协同营养元素和污染物共迁移。生物质源、热解温度、环境因子以及土壤介质类型等均会影响生物炭纳米颗粒协同污染物的迁移行为,因此将生物炭应用于土壤环境时应综合考虑上述因素。