论文部分内容阅读
二十一世纪是新技术和新材料飞速发展的世纪。随着计算机技术、通讯技术、生物技术以及微电子技术等的日益发展,人们对组成各个系统与结构的基本部分的性能提出了新的要求,不仅要求材料可靠与安全,更希望材料能根据其周围环境的变化来调整自身的某些参数以达到最优化的要求。关于“智能材料与结构”的研究正顺应这一趋势而蓬勃发展起来。铁电材料不仅是重要的电子功能材料,而且被认为是最有应用前景的智能基础材料。人们虽然对铁电现象很早就有了认识,但对其基本性能的认识还远未完善,对材料的微结构、疲劳、损伤、断裂、破坏失效的机理也不十分明了,迫切希望进行更深入、更全面的了解。本论文就是针对铁电材料的非线性力电耦合性能进行研究与分析,以期能对其本构关系作出简单明确的描述,为铁电元器件的材料设计、结构分析及寿命估计等提供依据。 本文主要进行了以下研究工作: ①提出了新的铁电材料力电耦合模型,以描述复杂的力电耦合效应。其工作包括: ——在分析铁电材料电畴翻转基本特征的基础上,引入电畴的“连续翻转”模型,克服了“完全反转”假设对铁电特性描述的局限性,使电畴翻转模型的物理意义更为明确。 ——建立了以电畴翻转时的体积分数增量为中心的,基于铁电畴壁运动特性的剩余应变及电位移的增量形式的演化方程,在其中包含有材料参数、畴壁运动、电畴形式、电畴体积分数及基体与夹杂、夹杂与夹杂等相互间能量作用等影响因素。 ——依据晶体塑性理论,将铁电材料中的电畴翻转类比于晶体位错滑移面上的滑移系,定义铁电材料中相应的电畴反转系;采用电畴的体积分数表述电畴翻转的变化量,得到了电畴翻转的饱和特性的简单描述。 ②初步提出了跨多尺度的铁电陶瓷材料的力电耦合分析方法,得到与实验结果相符合的铁电陶瓷本构行为的计算结果。主要内容包括: ——建立基于铁电材料微结构的夹杂单元体的均匀化方法,不但将材料的宏、细观力电响应关系连接起来,而且将材料细/微观结构的几何及材料特性与材料的宏观性能相统一,使对铁电多晶材料的损伤、疲劳及破坏等的研究更直接有效。 ——通过采用基于Hill理论的扩展的自洽计算方法,将其从一般多晶材料、复合材料的纯力学性能描述,扩展到具有力电耦合的复杂情况,建立其整体迭代和局部迭代的计算方法,得到铁电多晶材料的非线性力电耦合关系的描述。重庆大学博士学位论文③应用提出的模型与方法,针对层状微结构铁电材料的具体特点,进行了计算与分析,包括: 建立了层状铁电材料的力电场边界条件,推导出在外加力电场作用下的各层材料的局部力电响应的表达关系。 对各层材料的体积百分比及相对弹性模量对材料整体性能的影响进行了计算与分析。 分析了不同空间取向分布的铁电夹杂体,获得了其等效应力及等效应变的分布情况与演化关系,指明因夹杂的空间分布而引起的非均匀性因素对损伤与破坏的影响。④发展了能采用多轴加载方式的计算程序。该程序不仅适用于四方—立方结构相变的钙钦矿型铁电材料,而且通过简单修改,就可应用于其它结构相变形式的铁电材料电畴翻转的描述之中。