论文部分内容阅读
概率论是从数量上研究随机现象的规律性的学科,它在自然科学、技术科学、管理科学中都有着广泛的应用,因此从上个世纪三十年代以来,发展甚为迅速,而且不断有新的分支学科涌现。概率极限理论就是其主要分支之一,也是概率论的其它分支和数理统计的重要基础。前苏联著名概率论学者Gnedenko和Kolmogrov曾说过:“概率论的认识论的价值只有通过极限定理才能被揭示,没有极限定理就不可能去理解概率论的基本概念的真正含义”。关于独立随机变量的经典的概率极限理论在上世纪30年代和40年代已获得完善的发展,是概率论发展史上的重要成果。二十世纪六十年代以来,继独立随机变量和序列的极限理论获得完善发展之后,各种混合随机变量序列、相伴随机变量序列及鞅的强极限理论又有很大发展,我国学者在这方面做出了许多出色的工作,在国际上也有一定的影响。信息论的熵定理也称Shannon-McMillan定理或信源的渐进均分割性(AEP),是信息论的基本定理,也是各种编码定理的基础。关于熵定理的最新发展可参考文献。
树上的随机场是随机过程理论在树一这一新的数学模型上的应用,它产生于信息理论的编码和译码问题.假设一个序列{Xn,n≥0},其中状态和状态序偶出现的频率是否遵从大数定律,直接影响到编码方法的优劣,故这一领域一直是众多学者研究的重点。三十几年前,诞生的“随机场”这一概率论与统计物理的交叉学科与其它概率物理分支,代表着当今数学与物理相互渗透的大潮流的一个重要侧面。
近年来杨卫国教授与刘文教授合作,采用与传统方法不同的研究方法,在非齐次马氏链强大数定律、信息论熵定理、任意随机变量序列的极限定理、任意离散随机变量序列的强偏差定理及树图上马氏链场的强大数定与熵定理等方面进行了一系列研究,在国内外重要学术刊物上发表了一系列论文。本博士论文在杨卫国教授和刘文教授的研究基础上,进一步研究了树上高阶马氏链的强大数定律和熵定理,以及强偏差定理,推广了杨卫国等研究的结果。
第一章:基本概念,主要结论和方法介绍。
第二章:研究了广义Cayley树上二重马氏链的的强极限理论,作为推论得到了广义Cayley树上二重马氏链状态序偶频率的极限定理,同时也得到了广义Cayley树上二重马氏链强大数定律和Shannon-McMillan定理。
第三章:研究了广义一致有界无穷树上二重马氏链的的强极限理论,作为推论得到了广义一致有界无穷树上二重马氏链状态序偶频率的极限定理.最后,得到了广义一致有界无穷树上二重马氏链强大数定律和Shannon-McMillan定理。
第四章:研究了m根Cayley树上m阶非齐次马氏链的的强极限理论,作为推论得到了m根Cayley树上m阶非齐次马氏链状态序偶频率的极限定理.最后,得到了m根Cayley树上m阶非齐次马氏链在a.e收敛意义下的强大数定律和Shannon-McMillan定理。
第五章:在m根Cayley树上,通过任意测度与m阶非齐次马氏测度比较,研究了m根Cayley树上任意随机场关于m阶非齐次马氏链的强偏差定理,作为推论,得到了m根Cayley树上一类m阶非齐次马氏链的强大数定律与熵定理。
第六章:研究树上路径过程的随机条件概率的调和平均的极限性质。
第七章:研究有限无穷树上二阶非齐次马氏链和非齐次马氏链的随机转移概率的调和平均的极限性质。