论文部分内容阅读
本文以研制大型实用化的多点成形设备,提高板材多点成形过程的自动化程度为主要目标,重点对多点成形设备的调形原理、调形方法及相关技术进行了研究,开发了曲面造型及调形软件。研究成果已用于多台板材多点成形设备的调形控制系统,实现了调形过程的自动化。在此基础上,对多点成形过程中工件的自动进给以及成形误差的自动修正等进行了深入研究。得到的主要结论如下:1. 基本体群的调形原理及调形方法研究本文成功地解决了大型多点成形设备的调形问题,提出了串行、并行两种基本调形方式。串行调形的主要特征是对基本体进行依次调整,调形时间随着基本体数量的增加而增长。并行调形则是对所有的基本体进行同时调整,调形时间由基本体的最大行程决定。串行调形的基本原理是采用一个能沿 X、Y 方向移动的机械手依次对基本体进行调整。为了加快调形速度,采用在机械手上安装多个基本体调整装置的方法,机械手每移动一次可以对多个基本体进行调整。调形过程主要包含机械手移位、啮合角调整、电磁铁吸合、基本体调整、电磁铁脱开等动作。为提高调形速度和精度,机械手的动作采用了伺服电机驱动。在电磁铁控制电路中,采用了 PWM 电压控制技术,先加高电压使电磁铁可靠吸合,然后切换到低电压保持,这样既保证了电磁铁在长行程时有足够的吸力,又保证了吸合时工作的稳定性。并行调形的基本原理是为每个基本体设置一个调整装置,称为数控动力单元(控制单元)。通过工业现场总线,所有的控制单元与上位机构成了集散控制系统。调形时,所有的基本体可以同时调整。 i<WP=171>吉林大学博士研究生学位论文 2. 串行调形控制技术的研究及调形软件的开发 在串行调形方式中,控制系统采用工业级一体化工作站作为控制核心,扩展了伺服电机控制卡、开关量输入/输出卡(I/O 控制卡)等接口电路。伺服电机控制卡、伺服电机、编码器及驱动器等共同构成了多轴数控系统,对机械手进行精确定位控制。I/O 控制卡主要用于对电磁铁进行控制和检测。 调形软件的开发是控制系统的关键技术之一,其主要功能有,基本体群的曲面造型、基本体高度的调整及设备维护等。调形控制软件采用 VC++开发,所涉及的关键技术主要有多线程技术、OpenGL 三维图形处理技术、WDM 及DLL 调用、软件图形界面处理等。 基本体群的曲面造型是采用多点成形设备对板类件进行成形加工的开始,这与采用传统方法成形时,需先设计模具形状是同一道理。基本体群的曲面造型有其自身的特点,其最终目标是计算出构成目标曲面的各基本体高度值。规则曲面可以直接根据曲面方程进行造型设计,任意曲面用 NURBS 方法进行造型设计。 对基本体高度调整是通过编写控制卡的驱动程序,控制各轴伺服电机及电磁铁协调动作来实现的。软件采用分层的模型结构,对控制卡等硬件电路的驱动程序及相关的 WDM、DLL 调用等程序均被封装在软件的硬件驱动层。由于软件整体结构与具体控制电路相对独立,因而所开发的调形软件具有很强的通用性和移植性,成为串行调形方式的通用软件。软件的整体结构采用多线程设计,上、下基本体群的调形分别由各自的调形线程完成,实现了同时异步调整,避免了上、下模互相等待的情况发生,进一步缩短了调形时间。 采用这些技术,为 YAM-5 型多点成形设备研制了自动调形控制系统,并开发了具有自主知识产权的曲面造型及造型软件,该设备已成功的运用在铁路高速机车车头的生产实践中。所研制的控制系统的结构,现已成为串行调形方式下控制系统的典型结构。采用该结构及软件,成功的为 YAM-3 型多点成形设备研制了串行调形控制系统。 3. 并行调形控制技术的研究及调形软件的开发 并行调形是一种调形速度更快的调形方式。控制单元是并行调形控制系统ii<WP=172>摘要的关键部件,其主要功能是按接收到的控制指令和数据,对基本体高度进行精确地调整。由于控制单元数量较多,其稳定性、可靠性和控制精度直接关系到调形是否成功,因而研制高性能的控制单元是研制并行调形多点成形控制系统的关键技术之一。控制单元采用单片机进行控制,外围电路主要有通讯接口、电机驱动、转角检测、光电隔离、看门狗、稳压及滤波等。在单片程序中综合运用了奇偶校验、CRC 校验、软件看门狗等编程技术,提高了控制单元的抗扰能力。对工业现场总线进行扩展是并行调形控制系统的另一关键技术,文中通过对总线的通讯节点进行扩展,使上位机能够与大量的控制单元进行通讯。 并行调形软件的曲面造型期功能上与串行调形软件基本相同,但调形方法则与串行方式有着本质的区别。并行方式的调形过程主要通过向各控制单元发送调形指令实现。采用总线进行通讯时,上位机发出的信息将同时被所有的控制单元收到,文中通过制定多机通讯协议的方法实现上位机与任一控制单元的通讯功能。在软件界面设计中,更多地采用了 OpenGL 三维图形处理技术,实现了高品质三维彩色图像显示。采用并行调形方式,已成功地研制了 YAM-3C、Y