碳材料掺杂改性及其在锂硫电池中的应用研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:pkpm1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
锂硫电池因为超高的理论比容量(1675 m Ah g-1)和理论能量密度(2600 Wh kg-1)受到了广泛地关注,被认为是最具有发展前景的下一代高比能储能电池之一。但是迄今为止,锂硫电池还没能够得到大规模商业化应用。究其原因是因为锂硫电池本身还存在一些问题有待解决,例如单质硫和硫化锂的低电导率,电极在充放电过程中巨大的体积变化以及中间产物多硫化物的“穿梭效应”等。这些问题导致锂硫电池的活性物质利用率低、容量衰减迅速和循环寿命较短。针对以上问题,本论文从正极侧结构调控设计和隔膜侧改性的角度展开研究。具体研究内容如下:1、利用木质素磺酸钠和三聚氰胺作为前驱体,氯化钠作为造孔模板,使用冷冻干燥和高温碳化的方法制备了氮掺杂多孔碳(NPC)。通过改变前驱体碳化时的状态以及后续的碳化温度,实现了对NPC的结构调控设计。优化后的NPC具有复杂的导电多孔结构,可以负载较多硫并改善正极的导电性。同时,N元素掺杂能进一步提升NPC对“穿梭效应”的抑制作用。用该材料作为正极组装的锂硫电池,在0.5 C的电流密度下循环200圈后,仍然具有677.4 m Ah g-1的可逆放电比容量。2、通过高温碳化、冷冻干燥和高温自蔓延法制备了钴掺杂碳纳米管改性的还原氧化石墨烯气凝胶(rGO+CNT@Co)。该材料由片层状rGO和管状CNT@Co交联组成三维导电网络,既可以负载硫并改善硫的导电性,又能对多硫化物产生物理化学双重吸附作用,抑制“穿梭效应”。rGO+CNT@Co气凝胶在与硫复合作为自支撑正极时具有柔性、高负载的特点,同时表现出优异的循环稳定性;在作为常规正极时体现出较好的倍率性能,在2 C的大倍率下还能达到517.9 m Ah g-1的可逆放电比容量。3、利用三聚氰胺作为碳源,六水硝酸钴作为钴源和催化剂,通过高温碳化法合成了钴掺杂碳纳米管(CNT@Co),再使用真空抽滤法将CNT@Co负载在PP隔膜表面,制备了CNT@Co改性隔膜。CNT@Co改性层可以起到第二集流体的作用,Co元素的引入还能对多硫化物起到化学吸附和催化作用,有效抑制“穿梭效应”。因此,使用CNT@Co改性隔膜组装的锂硫电池在0.5 C的电流密度下经过100次循环后,还能保持530 m Ah g-1的放电比容量,展现了优异的电化学性能。
其他文献
燃料电池是一种清洁、高效的能量源,具有极大的发展潜力,整车经济性和电池寿命等是制约其商业化发展的关键因素。燃料电池输出功率的响应速度较慢,因此通常需要与动力电池配合来满足整车动力需求的快速响应,即通过燃料电池-动力电池混合动力驱动整车。燃料电池混合动力汽车的关键技术之一就是制定合理的能量管理策略,通过对整车的能量管理策略进行合理的设计,可以提高燃料电池的工作效率,提升客车的经济性,增加燃料电池的使
意见领袖直播带货是自媒体时代新兴的营销方式。通过扎根理论挖掘出直播意见领袖特征对消费者购买意愿影响维度构成及其作用机制。研究发现,意见领袖作为媒介信息的中间人和过滤者,直播带货时可以直接利用自身魅力属性和直播互动属性,以及直播推荐信息特征和营销信息刺激影响消费者的内在状态,改变消费者的价值感和信任感进而影响消费者的购买意愿。因此,从直播意见领袖提升自身关注度和企业营销需求来看,需要从直播意见领袖的
随着能源需求的不断增长,环境污染及能源利用之间的矛盾日益凸显,以燃烧为基础的利用方式更是加剧了一次能源的消耗,能源消费革命迫在眉睫。燃料电池作为一种高效清洁的发电装置,被认为是未来十大革命性科技之一,受到各界的密切关注。通过研究其内部传热传质机理,优化流场设计与水热管理,可以有效提高电池性能与可靠性,实现燃料电池的广泛应用。本文设计了一种强化脊下对流的循环蛇形流场结构,采用数值模拟和实验结合的方式
随着智能电网的快速发展,各种冲击性、非线性负载以及电力电子设备的大量使用,使得电能质量问题日趋严重,准确提取清晰有效的电能质量扰动信号特征,完成扰动信号识别是解决电能质量问题的基础与前提,对改善用电质量和维护电力系统安全稳定运行具有重要意义。目前,国内外主要利用小波变换、S变换等时频分析方法获取特征参数,采用神经网络等方法进行模式识别。由于标准S变换的时频分辨率不能同时取得最佳,从而影响扰动信号时
随着环境恶化和能源紧缺等问题日益突出,新能源技术逐渐受到各国的重视与支持,相比于传统的车辆,电动汽车不使用化石能源,可以实现零排放,对于保护环境具有重大意义。驱动电机作为电动汽车的动力来源,需要满足车辆行驶中的功率要求。相比于传统的径向磁通电机,轴向磁通电机具有更高的功率密度,同时具有结构紧凑的优势,更加适用于空间有限的新能源车辆。目前新能源汽车电力驱动系统主要采用集中式驱动,电机输出扭矩通过传动
近年来,由于城市现代化进程的加速,我国东南沿海地带建造了大批超高层建筑,这些超高层建筑具有轻质、高柔、低阻尼的特性,台风作用下主体结构容易出现水平、扭转风致响应,影响结构的安全性。传统的结构模态参数识别方法往往基于平稳假定,然而环境激励下超高层建筑实测的动力响应通常带有非平稳特征,所以传统方法具有局限性。因此,如何通过环境激励下的非平稳信号准确地估计结构的频率、模态阻尼等参数是模态参数识别工作的重
随着微型化器件的出现,高密度微型器件的散热冷却问题的解决是设备性能及工作寿命的保障。传统的换热器温度分布不均匀,流动存在死角,探索新的微尺度换热模式势在必行。因此,本文在前人的基础上提出一种用于冷热流体交换的微管换热器,即冷热管群水平置于充满介质水的封闭圆腔内进行换热。首先探究圆腔内冷热管管间距、排列方式、瑞利数对管群外自然对流强度的影响。结果表明,在不同的管间距下,管群的自然对流换热效果有差异性
因全球气候变化异常和化石燃料的过度使用而造成的环境污染已经对人类社会的发展产生了严重的影响。燃料电池作为一种高效环保的能源转换装置,可以有效提升能源使用效率并减少环境污染,因此,受到了人们的特别关注。阴极氧还原反应(ORR)的缓慢动力学过程是质子交换膜燃料电池(PEMFCs)研究的主要瓶颈之一,商业化应用中一般采用Pt基催化剂来提升阴极缓慢的动力学反应速率;然而Pt基催化剂价格高昂、稳定性和抗甲醇
随着自动控制技术、计算机技术的发展,汽车的智能化水平愈来愈高,由于广袤前景和新颖性,其成为了研究和关注的热点。其中主动换道是智能汽车研究的重点领域之一。研究汽车主动换道有助于解决交通拥堵和提高交通安全性。但是目前对智能汽车换道的研究大多集中在一些低速或者条件良好的工况,而智能汽车作为交通工具避免不了一些高速或者较湿滑路面的行驶。毫无疑问,车辆在湿滑路面上进行高速行驶时其结构参数会发生变化,其中和轮
泛素-蛋白酶体系统是生物体当中降解以及修饰蛋白质的重要系统,与生物体的生长发育息息相关。泛素-蛋白酶体系统由泛素分子、泛素活化酶E1、泛素结合酶E2、泛素连接酶E3、蛋白酶体及其底物构成,能够完成对底物泛素化的修饰,其中E3决定了被修饰底物的特异性。CUL4-DDB1复合物(CRL4)是近年来研究较多的一类E3泛素连接酶。DDB1作为CUL4泛素连接酶的核心组件参与细胞内许多重要的生命活动。前期研