【摘 要】
:
行人重识别旨在从不重叠的摄像区域定位特定行人,是一种为公安办案、寻找丢失人口的辅助技术。随着深度学习技术的发展与大型公共数据集的提出,基于深度学习的有监督行人重识别方法在性能上得到了巨大的提升。有监督的行人重识别方法的成功极大地依赖于大型数据集中的真实标签,然而,在现实中为海量的行人样本手工标记真实标签是极为耗时耗力的,这极大地阻碍了行人重识别技术的发展。因此学术界提出基于无监督学习的行人重识别方
论文部分内容阅读
行人重识别旨在从不重叠的摄像区域定位特定行人,是一种为公安办案、寻找丢失人口的辅助技术。随着深度学习技术的发展与大型公共数据集的提出,基于深度学习的有监督行人重识别方法在性能上得到了巨大的提升。有监督的行人重识别方法的成功极大地依赖于大型数据集中的真实标签,然而,在现实中为海量的行人样本手工标记真实标签是极为耗时耗力的,这极大地阻碍了行人重识别技术的发展。因此学术界提出基于无监督学习的行人重识别方法,其中基于域自适应的行人重识别方法取得了最先进的性能。在基于域自适应的行人重识别方法中,基于伪标签预测的方法取得了目前最好的性能,此类方法一般使用在源域上预训练的基础模型提取目标域的行人特征,然后利用聚类算法为无标签目标域样本预测伪标签,最后基于预测的伪标签微调基础模型,直至模型稳定。第一、此类方法在聚类分配伪标签阶段会产生较多的簇外点(outliers),并且大多数工作选择直接抛弃簇外点样本。这阻碍了模型的性能提升,因此本文设计了一种基于软标签的域自适应行人重识别方法,通过软标签与伪标签结合的方式处理簇外点,并基于软标签提出一种难样本选择策略。第二、为了解决现有模型挖掘目标样本的多粒度特征有限的问题,本文提出一种基于多粒度特征和软标签的域自适应行人重识别方法。总之,本文的贡献有:(1)、为了挖掘簇外点的内在信息,提升模型的泛化能力,本文提出一种基于软标签的域自适应行人重识别方法。首先提出一种新的软标签生成策略,通过软标签和伪标签结合的方式处理簇外点。然后在软标签的基础上提出一种难样本选择策略。最后结合行人的全局特征和局部特征,提升模型学习目标域行人的鉴别性特征的能力。(2)、为了挖掘目标域样本的多粒度特征,提升模型的泛化能力,本文提出基于多粒度特征和软标签的域自适应行人重识别方法。基于一种新的样本增强方法,生成多粒度样本,并结合软标签策略为模型的学习提供更多的正确样本,最后通过结合三元组损失和交叉熵损失训练基础网络模型。本文在两个大型公共数据集Market1501和Duke MTMC-re ID上实验验证本文所提出的两个方法,实验结果表明,本文的方法在Rank-1和m AP评价指标上都取得了更好的结果,表明了本文所提出的方法能提升行人重识别模型的泛化能力。
其他文献
随着我国高等教育的发展,在高校大量扩招、大学生数量激增的同时,逃课、挂科等现象开始出现,这严重影响了学生的学业与学校的校风。因此,进行有效的学业预警变得越来越重要。为了保障学校教学质量,督促学生学习,本文给出了融合考勤预警与挂科预警的学业预警方案。通过人脸识别的方式进行学生考勤,根据考勤情况生成考勤预警;并基于学生的考勤情况以及历史考试成绩等数据,利用机器学习对当前学期的课程进行挂科预测,根据预测
车辆数量的增长趋势很快,促进了交通基础设施的建设和发展。为了提高交通效率,方便人们出行,有关人员着力研究智能交通监测系统。智能交通监测系统的重要性日益凸显,而车辆跟踪是其必不可少的组成部分,因此研究车辆跟踪有重大意义。针对车辆跟踪所面临的各种问题,论文提出了一种基于深度学习和核相关滤波的车辆跟踪算法。利用改进的YOLOv3网络检测车辆的位置,在跟踪过程中根据更新策略不断调整核相关滤波的跟踪框,从而
在电子信息产业高速发展的时代,印刷电路板(printed circuit board,PCB)作为电子设备中最为基础且不可替代的一部分,在国内外有很大的应用市场。为了适应工厂高质量快速的PCB生产现状,避免因PCB质量不合格而导致对电子器件的使用寿命与使用的稳定性造成影响,需要对PCB进行高效且准确的缺陷检测。如今通过人工目检的方法已逐渐被淘汰,而基于机器视觉的智能化检测方法因检测速度快、准确率高
在无线通信领域中,调制识别是非合作通信的重要组成部分。通信技术的发展,带来的多样化信道环境,使调制识别变得越发困难。随着深度学习的出现,其在图像和语音识别方面取得了很好的效果,深度学习可以解决有效特征提取的困难,利用深度学习进行调制信号的自动识别已成为通信领域重要研究方向。首先,介绍了调制模式的基本原理和深度学习的理论,引出了常见的深度学习神经网络模型,并分析了不同神经网络模型的优缺点。然后,提出
随着教学改革的深化与深度学习的推进,校本课程逐渐成为基础教育学校教学内容的重要载体和特色化办学的突破点。学校可从明确育人目标、界定分类标准、把握课程功能、强化内容设计、开展科学评价、打造项目团队等方面切入,探索与改进校本课程的开发、设计与实施,真正实现学生核心素养的落实和德智体美劳的全面发展。
目的探讨抗-CD38单克隆抗体对输血前检测实验的干扰及其处理措施。方法收集2名接受抗-CD38单克隆抗体治疗的多发性骨髓瘤患者血样,分别进行ABO和Rh血型抗原定型、直接抗人球蛋白实验、不规则抗体筛选和鉴定、交叉配血实验;将不规则抗体筛选用试剂红细胞、抗体鉴定谱细胞、交叉配血用的献血者红细胞、平行对照用的O型K(+)E(+)红细胞与0.2 mol/L的DTT按照红细胞:DTT为1∶4的比例进行混合
在当今时代,图片作为信息存储和交流的最直观和方便载体,在互联网上大量的传播,图片数据的数量爆炸式增长,以此为前提图像检索任务的需求是目前的重要课题。水利行业伴随着水利信息化的推进,越来越多的监控摄像头被用于记录各水利设施的运行情况,同样产生了大量的图片数据。由于需要对这些水利图像数据进行智能化分析,水利图像检索方法也被迫切需求。基于哈希的图像检索方法和卷积神经网络结合后产生了深度哈希方法,能够满足
随着数字化科技的不断发展,数字图像信息因其具有较强的综合性和直观性等特点,在日常生活的各方面如通讯、教育、医疗等方面都得到广泛应用。同时,数字图像在存储、传输的过程中有可能会受到攻击者的非法盗取或篡改,这将损害合法信息持有者的利益,故研究出安全可靠的数字图像加密方案至关重要。因此,近年来很多信号处理的方法被应用到图像加密中,例如傅里叶变换、离散余弦变换、梅林变换、混沌映射及它们的分数阶版本等,但深
随着对自动情感识别系统的需求日益增长,情感识别的深入研究越来越重要。近年来,硬件和深度学习方法高速发展,自动情感识别性能不断提高。由于情感的抽象概念和多重表达,自动情感识别仍然是一项极具挑战性的任务。目前,情感识别的传统方法一是主要集中在提取不同类型的手工特征上。然后依靠人工手动标注视频的情感内容来达到情感识别的目的,但手工制作的特征总是需要特定任务的领域知识,而设计合适的特性可能更耗时。因此,探
卷积神经网络作为深度学习领域的一项代表技术,在目标检测与图像分类识别等计算机视觉任务中性能表现突出。随着网络深度越来越深,模型结构越来越复杂,网络中的参数量和计算量也越来越大,导致其难以应用在计算和存储资源较差的设备上,因此对卷积神经网络模型压缩技术的研究变得越来越重要。本文基于参数剪枝的思想对模型压缩方法进行研究,主要研究内容如下:提出基于混合参数剪枝的模型压缩算法,该算法分别对卷积神经网络中的