冻融循环作用下水泥基材料劣化机理及性能提升技术研究

来源 :兰州交通大学 | 被引量 : 0次 | 上传用户:hzn_avr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
冻融循环是影响水泥基材料耐久性最为重要的因素,在冻融循环作用下,混凝土将产生内外裂缝,使混凝土结构强度和刚度发生衰减,裂缝还会导致钢筋锈蚀、碳化、化学腐蚀加剧,从而造成钢筋混凝土结构维护成本提高,使用寿命缩短。近年来,采用低温相变材料(Phase hange Materials,PCMs)来提升水泥基材料抗冻性能的研究得到了广泛的关注。本文首先研究普通水泥基材料在冻融循环作用下的劣化机理,而后通过制备低温复合相变材料并将其掺入水泥基材料中进行抗冻性能提升试验研究。(1)研究混凝土在冻融循环过程中孔隙结构对力学性能的影响,对不同冻融循环次数的混凝土进行力学性能、低场核磁共振(NMR)等试验,并利用灰色关联熵方法建立冻融循环过程中抗压强度与孔隙结构之间的数学模型。结果表明:随着冻融循环次数的增加,混凝土力学性能下降明显,孔隙度增加且T2谱总面积逐渐增加;冻融循环过程中对力学性能影响最大的两大因素分别为少害孔孔隙占比以及自由流体饱和度(FFS),对应的灰熵关联度分别为0.9893和0.9952。以抗压强度为参考,以自由流体饱和度和少害孔孔隙占比为比较序列建立GM(1,3)模型,模型预测值与试验平均值相对误差仅为0.29%,表明预测模型可以为混凝土冻融循环过程中力学性能提供公式依据。(2)以正十四烷(C14)为相变材料,膨胀石墨(EG)为载体,通过物理吸附法制备C14/EG复合相变材料,采用步冷曲线、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)、傅里叶红外光谱仪(FTIR)对C14/EG复合相变材料的微观形貌、相变温度、相变潜热、化学结构进行测试。开展了外掺(与水泥质量比)0%、2%、4%、6%相变材料的相变储能砂浆(PCESM)快速冻融循环试验,分析了冻融循环对表面损伤、质量损失、动弹模量损失、抗压强度及孔结构的影响规律,揭示了PCESM冻融循环劣化机理。试验结果表明:C14能够较好地吸附在EG孔隙中,C14与EG之间有良好的相容性,二者未发生化学反应。由于C14/EG相较于水泥基材料为弱相,因此随着C14/EG相变材料掺量的提高,PCESM的力学性能随之下降,但抗冻性能随着C14/EG相变材料掺量的提高呈现先提高后降低的规律,C14/EG相变材料掺量为4%的PCESM抗冻性最优。同时对外掺(体积占比)0%、1%、2%、3%、4%C14/EG复合相变材料的混凝土进行快速冻融循环试验,分析冻融循环对混凝土表面损伤、质量损失、动弹模量损失的影响规律,揭示了相变储能混凝土冻融循环劣化机理。试验结果表明:当C14/EG复合相变材料掺量为体积分数3%时,混凝土抗冻性能最优。(3)通过膨胀珍珠岩(EP)多孔吸附正十四烷(C14)后采用水泥外包裹制备C14/EP复合相变材料,采用步冷曲线、SEM、DSC、FTIR对C14/EP复合相变材料的微观形貌、相变温度、相变潜热、化学结构进行了测试。通过C14/EP复合相变材料等质量取代河砂(0%、10%、20%、30%)制备相变储能水泥基材料,并进行力学性能试验、冻融循环试验、微观结构等试验,共同揭示C14/EP复合相变材料在水泥基材料中的最佳掺量及作用。试验结果表明:C14/EP复合相变材料对水泥基材料力学性能影响较小,其抗冻性能随着C14/EP复合相变材料掺量的提高呈现先提高后降低的规律,当C14/EP相变材料掺量为20%的水泥基材料抗冻性最优。(4)利用温度传感器模拟测试砂浆板从室温-低温-室温条件下板内部温度变化,对比相变储能砂浆与普通砂浆的储热性能。结果表明:复合相变材料的掺入能够有效减缓水泥基材料内部的降温速率,减少了温度应力对水泥基材料的影响,从而提高水泥基材料的抗冻性能。
其他文献
近年来,我国桥梁事业飞速发展,波形钢腹板组合箱梁桥作为一种新型组合桥梁结构形式,较之传统预应力混凝土箱梁桥优点突出。随着国内建设的波形钢腹板组合箱梁桥愈来愈多,一种以钢底板取代混凝土底板的新型波形钢腹板组合箱梁桥走进了大众的视线。现阶段,对于这种新型波形钢腹板组合箱梁的研究成果较少,且对于曲线波形钢腹板-钢底板组合箱梁桥的研究就更为稀缺。本文采取理论推导和有限元模拟相结合的方式,重点就双箱单室曲线
学位
随着我国水利事业的快速发展,水利工程的数量和规模都达到了前所未有的高峰,大量水工引水隧洞应运而生。但隧洞的修建不可避免要穿越富水地段,而富水地段的隧洞施工,极易发生突泥涌水等安全事故并破坏隧址区生态环境。本文以引大济湟工程为依托,首先通过统计隧洞突涌水案例,分析隧洞突涌水的内在规律,之后通过对比LSTM、Elman神经网络、线性回归等方法的预测涌水量与隧洞施工实际的涌水量,得到预测隧洞涌水量最优方
学位
独-斜塔混合梁斜拉桥作为一种结构较为新颖且复杂的斜拉结构,对该类桥梁的参数化研究相对较少。同时出于合理设计的考虑,对此类桥梁进行静动力参数化分析也是十分必要的。故本文选择一地区条件较为复杂的独斜塔钢-混混合梁单索面跨海斜拉桥为例,进行静动力参数化分析如下:(1)将斜拉结构简化,以主梁位移为研究对象,建立不同梁段位移插值函数。随后通过能量法求得斜拉结构总势能,应用Ritz法对各位移插值函数待定系数解
学位
光敏性皮肤病及皮肤炎症是由于紫外线照射、空气污染等因素引起的使患者出现皮肤变薄、皮肤红斑水肿及灼热瘙痒等临床表现的一种疾病。精神紧张与自身压力等问题都会导致机体自身的内分泌失调,使得皮肤的抵抗能力与自愈能力逐渐下降。光敏性皮肤病及皮肤炎症受到地理、种族、年龄、饮食等多方面因素的影响,在各种环境问题爆发、人民生活方式改变的大环境下,我国居民光敏性皮肤病及皮肤炎症的发病率呈逐年递增的趋势。天然化合物源
学位
基于对国内外在强化生物除磷(EBPR)工艺方面的研究现状和发展趋势的大量调研和分析,发现无论是实验室培养的以NO2-为电子受体的反硝化吸磷系统还是不同工艺污水处理厂的活性污泥中“Candidatus Accumulibacter Phosphatis”菌属几乎均以其II型(简称为PAO II)为主导。PAO II的优势存在不以地区、温度、水质变化及工艺是否具备EBPR能力等因素而改变。然而,现有的
学位
波形钢腹板钢-混组合箱梁作为一种新型结构,不但降低了桥梁自重,提高了桥梁的承载力,也使得钢材和混凝土两种材料的力学性能得到充分发挥。由于混凝土材料随着时间的增加同时也伴随着徐变的产生,而钢材没有,这两种材料的结合会随着时间变化而改变。徐变效应会引起箱梁截面应力重分布,也会影响载荷长期作用下箱梁剪力滞。本文针对单箱双室波形钢腹板钢-混组合箱梁进行了公式理论推导与数值模拟,探究徐变效应对剪力滞的影响。
学位
喹啉骨架具有抗癌、抗炎、抗菌、抗病毒、抗真菌、抗氧化和自由基清除活性等广泛的生物活性,倍受研究者青睐。尤其是以喹啉为核心骨架进行抗菌药物的开发,具有潜在的应用前景。课题组前期研究发现2,8-二(三氟甲基)喹啉是优良的抗菌先导分子,因此,本论文以2,8-二(三氟甲基)喹啉作为先导模型,通过多样性导向合成和活性官能团导向合成策略在4位引入活性基团和优势抗菌片段,合成多个系列衍生物,系统评价其对农业病原
学位
近年来随着我国交通建设规模的不断扩大,桥梁工程得以快速发展。当遇到地形复杂的沟谷地区时,将不可避免的采用大跨径高墩桥梁。然而当桥墩过高时,以往采用的型式所需要的混凝土用量大幅增加,导致自重过大、经济性低,并且其刚度以及抗震性能不满足要求。为了减小混凝土的自重、提高经济性能,同时保证桥墩的安全,桥梁工程中开始使用新型格构式高墩。在格构式高墩的施工以及使用过程中,桥墩的稳定性与安全性极其重要。为了研究
学位
“十四五”规划和2035年远景目标的确立,能够深入推进“一带一路”合作倡议。重要内容之一便是优化国土空间布局,其内核是中西部省区在有条件的前提下培育多个“中心城市”,在这动态探索过程中,中西部地区必将迎来新一轮发展基建的高潮。广泛分布于西北干旱与半干旱地区的黄土,由于其特定的生成环境和赋存环境,在漫长的地质年代中经历了长期、多循回地质作用,故其土体参数具备较为显著的空间变异性,且具有天然含水率低、
学位
近年来,深度学习技术由于其强大的学习能力已经被广泛地应用到了分子属性预测以及分子生成领域。基于深度学习的分子属性预测方法通过自动学习样本特征,能够对大量化合物进行快速预测。而深度分子生成方法则可以高效探索大型化学空间,生成大量具有所需特性且结构多样的新型分子。然而整体而言,深度学习技术在分子属性预测以及分子生成领域的应用仍处于初步阶段,许多问题都有待进一步解决。在基于深度学习的分子属性预测方法中,
学位