论文部分内容阅读
金属双极板作为燃料电池的关键部件,在燃料电池工作过程中因电化学腐蚀,表面腐蚀产物不断增厚,使双板板的接触电阻增大,导致部分电能转换为热能,从而降低燃料电池能量转换的效率。通常在金属双极板表面涂覆一层导电防护膜,来解决或最小化上述问题的影响。本论文首次尝试将有序介孔碳制成薄膜应用于质子交换膜燃料电池不锈钢双极板表面防护,提出薄膜成分选择的新思路,通过在纳米尺度上进行多组分的协同组装对介孔碳膜进行改性,探讨薄膜微观结构形成机制,在模拟质子交换膜燃料电池酸性溶液中研究有序介孔碳基薄膜的电化学特性。论文的主要内容介绍如下:1、结合溶剂挥发诱导自组装法和旋涂法,以嵌段共聚物F127为模板剂,酚醛树脂为碳源,在304不锈钢表面直接制备有序介孔碳膜。结构测试显示,有序介孔碳膜的比表面积在500650m2g-1,孔容0.40.5cm3g-1,介孔比例大于70%,说明其具有较好的介孔结构。相比于不锈钢裸片,涂覆有序介孔碳膜后,腐蚀电位提高了100400mV,腐蚀电流下降了1个数量级,模拟质子交换膜燃料电池的恒电位极化时,腐蚀电流密度可低至0.464μA cm-2,但此时接触角仅为71°,电导率为0.0043S m-1。进一步提高热处理温度,会引起骨架的收缩,介孔碳膜局部产生裂痕,在极化测试过程中极不稳定,导致电荷传递阻抗的降低和腐蚀产物扩散速率加快。针对纯介孔碳膜的缺点,我们尝试了下面4种改性途经。2、在有序介孔碳膜中引入刚性的二氧化硅组分,强化介孔碳膜的热稳定性和防腐性能。通过三元共组装制备介孔碳-二氧化硅复合膜,在400到700℃的热处理过程中,其孔径收缩了12.2%,较纯介孔碳收缩14.7%,明显降低,扫描电镜测试显示复合膜表面未见裂痕。电化学测试表明,经二氧化硅复合后的有序介孔碳膜腐蚀电流密度(0.0975μAcm-2)减小为纯介孔碳膜的五分之一,碳化温度达700℃时恒电位极化曲线也非常稳定,说明高温热处理后碳-二氧化硅薄膜的致密性依然较好。3、在介孔碳中分别掺杂B、P、N等元素形成杂化介孔碳,以改善介孔碳的石墨化程度和防腐性能。在高温热处理时,这些元素有利于酚醛树脂由无定形向石墨化转变,提高了涂层的导电能力和疏水性,其中硼酸的加入还能一定程度上提高了薄膜的热稳定性。如热处理温度为500℃时,掺杂B、P、N的介孔碳膜电导率分别可达0.15、0.21、0.029S m-1,对应的接触角分别为86、91、80°,显著高于纯介孔碳膜。恒电位极化测试显示,杂化介孔碳膜在0.5M H2SO4中具有良好的稳定性,动电位极化测试其腐蚀电流密度分别为0.285、0.0299、0.166μA cm-2,表现出较好的防腐性能。4、将含W或Mo元素的前驱体添加于酚醛树脂前驱体中,分别制备有序介孔碳-钨复合薄膜和碳-钼复合薄膜。由于钨和钼化合物具有催化石墨化效应,介孔碳膜的石墨化程度和电导率随着这两种元素的含量的提高而增大。热处理温度为500℃时,其电导率分别可达0.82和0.11S m-1。介孔骨架的特殊空间结构,引导钨化合物以规则的棒状形式生长,该棒状物主要由氧化钨和碳化钨组成。动电位极化测试结果显示碳-钨复合薄膜最低的腐蚀电流密度为0.0559μAcm-2。有序介孔碳-钼薄膜具有非常致密的结构,钼主要以氧化钼和碳化钼的复合形式均匀的嵌入在碳壁中,粒径约4nm,在0.5M H2SO4中的自腐蚀电位为277mV,腐蚀电流密度仅有0.0273μAcm-2。5、为了同时增强介孔碳膜的疏水性和电导率,在制备有序介孔碳的过程中原位加入高石墨化、高导电的石墨烯或碳纳米管,获得了高电导率、且具有微纳米粗糙结构的复合膜。其电导率分别0.35和0.41S m-1,接触角为90和96°,在模拟PEMFC工作环境下的测试的自腐蚀电流密度分别为0.140和0.008μAcm-2,表现出优异的防腐性能。