论文部分内容阅读
中厚板辊式淬火机因其具有冷却强度高、冷却均匀性好及多功能冷却等特点,因此在国内外中厚板淬火过程中成为首选设备形式。由于中厚板淬火工艺复杂、控制难度大,所以必须开发精确的冷却数学模型及相应的控制系统,以实现淬火过程的精确控制。本文以东北大学轧制技术及连轧自动化国家重点实验室(RAL)自主研发的中厚板辊式淬火机为研究对象,针对中厚板淬火工艺特点,建立水冷过程、汽雾冷却过程、空冷室强风冷却过程数学模型及淬透层深度预测模型。在此基础上,构建辊式淬火机过程控制系统,实现我国自主开发辊式淬火机的自动化、精确化控制,进而提高中厚板的综合性能质量。论文主要工作和成果如下:(1)本文根据射流冲击换热理论,对不同喷嘴形式下钢板表面努塞尔数(Nu)分布规律进行了研究,通过引入交互作用影响函数,建立了钢板温降与冷却强度、冷却时间等参数之问的定量关系,进而给出了各水冷段的综合换热系数模型,同时对影响淬火模型计算精度的主要因素进行了详细的分析,在此基础上,建立了淬火机射流冲击水冷模型,制定了多冷却段组合策略,明显提高了模型的计算精度。实现了不同喷水形式的辊式淬火机淬火过程温度、组织的精确控制。(2)利用现场实测数据,通过气液两相流耦合计算,建立了喷射角和喷射参数计算模型。通过钢板表面换热规律的研究,发现稳定的膜态沸腾是汽雾冷却的主要换热形式。在研究板厚、辊速及水量等参数对汽雾冷却换热系数的影响规律的基础上,基于大容器膜态沸腾理论,建立了汽雾冷却换热系数模型,进而给出了水-气喷射模型和汽雾冷却换热模型,使汽雾冷却在中厚板离线热处理领域得到成功应用,为薄规格钢板淬火提供了新的途径。(3)通过对空冷室结构特点的分析,指出气体射流冲击换热是其主要换热形式。在此基础上,提出了利用过程离散化分析方法解决循环介质的喷射参数计算和钢板表面换热等问题。通过分析钢板表面Nu分布与板厚、雷诺数(Re)、气体喷射量、喷嘴排布方式等因素的关系,给出了气体射流换热系数的分布规律。考虑到Nu测量比较困难,本文采用集总参数法计算对流换热系数,为风冷模型的应用奠定了基础。将强制风冷换热模型应用到6mm以下不锈钢及高温合金固溶处理中,实现了空冷室自动化控制。(4)针对传统淬透层深度预测方法的预测精度不高,很难适用于中厚板辊式淬火机的具体情况,提出了中厚板淬透层深度的概念。以修正的Grossmann法为基础,通过对含碳量、奥氏体晶粒度及合金元素对不同钢理想临界直径的影响规律的研究,引入合金交互作用函数,建立了碳钢和低合金钢的淬透性预测模型。同时,结合CCT蓝线和等温转变C曲线,分别采用修正Maynier法、Eldis法和等温曲线法对临界冷速进行了计算,结果表明等温曲线法是较优的临界冷速计算模型。淬透层深度预测模型的建立为辊式淬火机淬后钢板性能预测提供了有效的方法。(5)采用Fuzzy-PID控制法对淬火机喷水系统进行改进,该系统具有快速响应、抗干扰能力强、稳定性好等特点。结合已建立的相关冷却模型,建立了淬火机过程控制系统,通过规程分配、功能触发和淬火参数计算,淬火机实现了高精度温度控制、板形控制和淬火模型自学习。通过建立稳定快速的通讯系统、精确的跟踪系统和数据库,实现淬火机自动淬火功能,进而实现了自主开发的淬火机自动化、精确化控制。建立的控制系统已成功应用于宝钢、南钢等辊式淬火机,解决了辊式淬火机控制复杂和控制精度不高等难题。通过上述中厚板辊式淬火机冷却模型的研究和控制系统的建立,开发出了具有自主知识产权的成套中厚板辊式淬火机控制系统软件。相关结论作为研究成果的一部分获得了2010年中国冶金科学技术奖一等奖,为企业创造良好的经济效益。