【摘 要】
:
无线通信系统的蓬勃发展,使得各类射频电路遍布生活的方方面面,超宽带技术具有宽带宽、低功率、抗干扰能力强等诸多优点,是一种极具前景的新型无线通信技术。混频器作为射频收发系统中的核心模块,其变频功能至关重要,且其性能直接决定着整个系统的性能下限。一直以来,我们都希望得到尺寸更小、功耗更低、性能更佳的电路,而随着CMOS工艺的日渐成熟,器件性能不断提升,工艺成本大幅降低,与Ⅲ-Ⅴ族工艺相比更具市场竞争力
论文部分内容阅读
无线通信系统的蓬勃发展,使得各类射频电路遍布生活的方方面面,超宽带技术具有宽带宽、低功率、抗干扰能力强等诸多优点,是一种极具前景的新型无线通信技术。混频器作为射频收发系统中的核心模块,其变频功能至关重要,且其性能直接决定着整个系统的性能下限。一直以来,我们都希望得到尺寸更小、功耗更低、性能更佳的电路,而随着CMOS工艺的日渐成熟,器件性能不断提升,工艺成本大幅降低,与Ⅲ-Ⅴ族工艺相比更具市场竞争力。因此,研究高性能的CMOS宽带混频器具有重要意义。基于此,本文提出了一种应用于超宽带下变频系统的高性能混频器。该混频器的设计基于传统的Gilbert混频器,为使其各项性能指标实现折中优化,对混频器各级结构进行了改进。混频器的跨导级采用电阻负反馈结构,电阻负反馈能以较小的面积实现提高混频器线性度的作用。开关级采用动态电流注入结构,在不引入额外噪声的前提下,尽可能地消除输出端的闪烁噪声,保证电路良好的噪声系数。负载级采用电感峰化技术,通过与电容谐振,展宽信号带宽。在超宽带混频器核心电路和本振恢复电路的输入端加入了阻抗匹配网络,良好的匹配不仅能最大化传输功率,同时能减小噪声系数,通过借助Smith圆图可以较为方便、直观地实现匹配。本文还设计了本振恢复电路,恢复从片外传输到片内过程中衰减的本振信号,使混频效果达到最佳。本论文中的设计采用0.13μm CMOS工艺,通过Cadence进行电路设计,结合Spectre工具进行仿真,最后通过Virtuoso工具实现版图设计。电路在1.8V电源电压下,功耗为20.46m W,工作宽带为1.4-14.3GHz,输出中频为1.5GHz,转换增益在带宽内均大于5d B,最大转换增益可达5.8d B,噪声系数在2.2-11GHz内小于13d B,P1d B大于-6.012d Bm,IIP3大于3.865d Bm。以上仿真结果表明,该混频器的各项性能参数均达到了预期的指标要求。
其他文献
由于网格依赖性,有限元法在计算一些大变形和移动边界问题中遇到了许多困难。一些发展比较成熟的伽辽金型无网格法可以很好地避免这些困难,然而它们需要使用背景网格进行积分,对于大规模问题计算效率较低。本文采用的无网格局部彼得洛夫-伽辽金法(MLPG)具有完全不需要网格、计算速度快和精度高等优点。本文在这种方法的框架内提出了计算非线性材料大变形问题的计算方案,并得到了算例验证,主要工作如下:1.对MLPG法
高斯和是数论中一个基本而重要的研究对象和基本工具。而高斯和明显表达式的计算是一个重要却又十分困难的问题,不仅在数论和算术几何中具有理论价值,而且在计算机科学、信息科学、组合学与试验设计等方面有实际的应用。从高斯本人开始,就有许多数学工作者致力于决定高斯和值的研究。可是,能够明显决定高斯和的情形很少。目前,学术界有两个研究方向:一是当高斯和的次数较小时,利用低次数域相对简单的算术性质,决定高斯和的明
螺旋线行波管因其频带宽、输出功率大,在电子对抗、卫星通讯等领域有着十分广阔的应用前景。随着工艺水平的提升,螺旋线行波管的工作频率提升到了V波段,V波段空间行波管在通讯中发挥着重要作用,因而研究V波段螺旋线行波管具备非常重要的意义。本文围绕V波段(52GHz~62GHz)螺旋线行波管开展研究,完成了互作用电路和电子光学系统的设计。V波段螺旋线行波管高频结构的研究。首先,研究了不同结构尺寸对高频特性的
电子技术的急速发展,不仅为人们的生活提供了方便,也引起了诸多的电磁污染。而开发高效的微波吸收材料是解决此类电磁污染问题的有效途径。然而,吸波材料在酸性、碱性、盐雾等复杂应用环境下,会出现腐蚀、老化等问题,从而降低其吸波性能。因此,发展集高效吸波和防腐性能于一体的复合材料是当前研究重点之一。本文以片状FeSiAl磁性合金为基体,针对其介电常数过高,阻抗匹配较差的特点,通过合理设计和优化制备工艺,以期
现在高速发展的世界,新能源的寻找任务十分紧迫,聚变热核反应作为一种可以产生高额能量产出的物理反应,是一种不产生核废料的清洁反应,成为一种理想的能量来源。氢及其同位素是聚变反应中的关键物质。与常规化石能源不同,氢作为一种二次能源,需要通过能量的转化从其他能源中制取。作为一种能源,氢具有很多优秀的特点。而在聚变热核反应中,碳材料是一种常见的面向等离子体材料(Plasma Facing Material
本论文采用紧束缚格林函数方法,系统的研究了碳纳米管中的缺陷及其对碳纳米管电子性质的影响。在分析了拓扑缺陷态空间分布特性的基础上,我们研究了缺陷之间的相互作用,发现缺陷之间有效相互作用的距离远大于缺陷态在空间的分布尺度,即缺陷之间存在长程相互作用。经过分析,发现能隙中的缺陷态可以通过低能势垒隧穿跃迁到体系的延展态上去,从而导致这种长程相互作用。这样的物理机制得到了我们构建的一维单原子链模型的验证。我
半导体功率器件是半导体领域不可缺少的一部分,半导体材料经过几十年的飞速发展,已经迭代到了第三代。其中的GaN因为具有大的禁带宽度,耐高温等优良特性以及AlGaN/GaN结构在界面处可以生成二维电子气导电沟道的特点,让基于GaN材料的高迁移率晶体管(HFET)在当今半导体功率器件领域备受关注。但目前市面上比较成熟的GaN基HFET器件多数是N沟道器件,P沟道器件因为GaN中采用Mg作为空穴受主杂质,
生物矿化是矿质结晶在生物的细胞基质或胞外基质中沉积的过程,是自然界中广泛存在的一种现象,对生物有着重要意义。软体动物的贝壳形成是最具代表性的生物矿化过程之一。研究表明,仅占贝壳总重不足5%的有机分子,特别是其中的基质蛋白,在贝壳的生物矿化过程中起着关键调控作用,控制着碳酸钙晶体的形成,同时赋予贝壳许多优异的力学和生物学性能。为进一步揭示贝壳形成的分子机理,本研究以我国培育海水珍珠的最主要贝类——合
强激光与固体靶耦合产生高强度,宽频谱的电磁脉冲辐射。随着高强度激光在多个研究领域得到越来越广泛的应用,电磁脉冲频繁地干扰实验的进行,甚至对诊断设备造成破坏。大部分激光装置在设计阶段缺乏对电磁脉冲的考虑,对电磁脉冲的应对仍停留在电磁脉冲耦合渠道的屏蔽,由此造成了很多不必要的损失。因此,探索电磁脉冲的驱动规律,研究电磁脉冲的产生机制具有重要意义。本文结合实验诊断、电磁仿真与GEANT4粒子模拟,围绕电
碳纳米管作为纳米体系的典型材料之一,其独特的几何结构和物理性质,使其在纳电子学领域,以及未来的量子器件中都可能有重要应用。本论文对碳纳米管结构的输运特性进行了研究,主要分析了碳纳米管相应结构体系的局域电子结构和电导,并对得到的结果进行了详细的讨论和解释。我们在π电子紧束缚模型下处理平行碳纳米管结,使用耦合参数来描述平行碳纳米管间的耦合。研究发现,电导值随着耦合强度和耦合长度的变化均呈现出振荡行为。