论文部分内容阅读
随着汽车保有量的增加和人们生活节奏的加快,因驾驶者疲劳而引发的交通事故屡屡发生。我们应该认识到,疲劳驾驶所带来的严重后果并不亚于酒驾,它是交通安全的巨大隐患,严重威胁着社会财产与生命安全。所以研究可靠且有效的疲劳驾驶检测技术,能够提前预测和判断出驾驶者的疲劳状态,及时预警,并让车辆自动减速,做到防患于未然,从而可以避免交通事故的发生。本文通过研究目前国内外关于疲劳驾驶检测技术的各类方法,总结其优势与不足。考虑到部分驾驶者存在佩戴眼镜的情况,提出基于眼睛、嘴部与头部状态相结合的方法识别疲劳状态。主要内容包括以下几部分:1.视频图像预处理。驾驶者的面部区域在行车过程中会受到不同光照的影响,同时由于视频图像在获取与传输过程中会产生噪声与模糊。因此本文预先对图像进行滤波去噪和光照均衡处理,保障人脸区域的准确检测。2.人脸检测与运动目标跟踪。在综合分析比较了各类人脸检测方法之后,本文采用基于Adaboost算法的人脸分类器检测视频图像中驾驶员的面部区域。该方法通过Haar-Like特征与积分图像法迭代训练人脸分类器。与传统的基于肤色或模板匹配的人脸检测方法相比,其检测效率更高、准确性更好。基于人脸检测的结果,采用粒子滤波运动目标跟踪算法实时追踪驾驶员的面部目标区域。3.眼睛检测与状态识别。首先,利用面部器官的几何分布规则粗略分割眼部的候选区域。其次,基于大律法对双眼区域进行图像自适应二值化。通过垂直积分投影并计算连通区域个数,判断驾驶者是否佩戴眼镜。最后,分两种情况选择对应的算法识别睁眼或闭眼状态。如果驾驶员佩戴眼镜,则提出基于局部直方图统计特征的算法识别眼部状态;如果驾驶员未佩戴眼镜,则采取基于Adaboost算法的人眼分类器直接定位眼睛,对单眼区域二值化后提取最大矩形并得到眼睛的近似张角,由阈值判断眼睛睁开或闭合状态。4.嘴部检测与状态识别。嘴部相对于人脸其他区域来说具有特殊的颜色与亮度信息。本文为了简化计算、提高检测效率,首先根据嘴部在面部的分布位置,粗定位嘴部候选区。其次二值化获得嘴部面积,利用Sobel边缘检测法提取嘴部边缘获得嘴部周长。最后计算似圆度,识别嘴部张开或闭合状态。5.头部状态识别。人在打瞌睡时,头部会出现突发性的上仰、下沉或规律性的上下往复运动。这部分主要利用已经定位到的眼睛与嘴部中心点位置信息,6.疲劳状态判断。该过程利用持续闭眼时间、眨眼频率、PERCLOS参数、打哈欠持续时间、打哈欠次数和点头频率等指标综合判断驾驶者是否瞌睡。最后根据疲劳状态各等级对应的面部表情行为特征,构建疲劳驾驶检测系统流程图,当检测到疲劳状态时,及时预警并让机动车自动减速。实验中对4组模拟驾驶场景下的视频图像进行检测,结果表明本文疲劳驾驶检测算法的检测效率较高,准确性较好,且满足系统对于实时性的要求。