论文部分内容阅读
二氧化钛(TiO2)的光诱导特性使其在环境污染物降解、自清洁涂层、光分解水制氢和太阳能电池等环境保护与能源转换领域具有广泛的用途。但受带隙宽度的限制,TiO2的光诱导特性需要以紫外光为激发光源,这在一定程度上限制了TiO2的实际工程应用。将TiO2的光学响应区红移至可见光区,不但可以利用太阳光的可见光成分,而且可以用室内光源作为激发光源,从而促进TiO2更广泛的应用。近年来,具有可见光响应TiO2的制备和相关性能研究正成为氧化物半导体研究领域的一个新热点。通过掺杂改变TiO2的电子结构是制备具有可见光响应TiO2的重要技术途径。本论文基于几种新型掺杂方法,制备了V掺杂、V/N共掺、C掺杂、C/N/F共掺TiO2。借助各种分析表征手段,对掺杂TiO2的微观结构、成分和掺杂元素的化学态进行了表征,并探讨了其中的掺杂机理。通过测试掺杂TiO2的光吸收性能和可见光催化活性(亚甲基蓝:MB;λ>420nm),评价了掺杂TiO2的光响应性能。论文的主要研究内容和创新点归纳如下:1.基于液相沉积法(LPD)制备金属氧化物薄膜的原理,首次将LPD法用于制备V掺杂TiO2薄膜,研究了V离子浓度对V掺杂TiO2薄膜晶体结构、V离子化学态和光响应性能的影响,并提出了原位掺杂机理。V掺杂TiO2薄膜主要由晶粒尺度为8~20nm的锐钛矿TiO2构成。在V离子浓度较低时,薄膜中V离子按照原位掺杂机制以V4+形式存在于TiO2晶格。掺V导致TiO2薄膜的吸收边红移,并具有可见光催化活性。随着V离子浓度提高,薄膜中V5+成分增加、晶粒尺度增大,使V掺杂TiO2薄膜的可见光催化活性逐渐降低。2.根据V掺杂TiO2和N掺杂TiO2电子结构的特点,提出以V、N共掺技术来增强TiO2的可见光吸收并提高其可见光催化活性。将控制水解工艺与室温氮化工艺结合,在室温下成功地制备了V/N共掺纳米晶(4~5nm)锐钛矿TiO2粉体。V以V4+和V3+形式占据部分Ti4+格点位置,N则以替位N和间隙N的形式存在于TiO2晶格,V对室温掺N有促进作用。纳米晶TiO2具有的高度化学活性、以及纳米晶表面和晶粒内大量的缺陷为室温下成功掺N提供了基础。V/N共掺使纳米晶TiO2的带隙相对于单独掺杂(掺V∶2.91eV;掺N∶2.92eV)进一步窄化至2.76eV。V/N共掺纳米晶TiO2对可见光更多的吸收和更高的光量子效率导致共掺TiO2具有比单独掺杂TiO2更高的可见光催化活性。3.首次采用硝酸控制氧化法在低温一步实现了微—介孔结构形成、孔壁晶化和掺C,这种新型掺杂方法避免了常用高温掺C工艺带来的孔洞结构塌陷问题,且具有工艺简单和易于工程化实现等优点。硝酸控制氧化法制备的C掺杂微一介孔双模结构TiO2,孔壁由纳米晶(3~5nm)锐钛矿TiO2构成,BET比表面积最高达246.9 m2/g。晶格C由占据TiO2点阵中部分O格点的替位C和碳酸盐形式的间隙C两部分组成。高含量的替位C(6.3at%)使粉体的光学吸收边红移至453nm。而且,粉体在整个可见光区都有显著吸收。C掺杂微一介孔双模结构TiO2具有显著的可见光催化活性。乙醇对C掺杂微—介孔双模结构TiO2粉体的比表面积、晶格C含量具有重要的控制作用。4.首次提出并实现了基于模板剂双功能作用、用于制备非金属元素掺杂介孔TiO2的PBFT法。与常见模板法制备介孔TiO2工艺中模板剂仅具有单一功能(形成介孔结构)不同,PBFT法中模板剂具有形成介孔结构和提供掺杂源的双功能作用:高温烧结形成孔洞结构的同时,模板剂分解产物为掺C提供了C源、为掺N提供了部分N源。另一部分晶格N则来自于氟钛酸铵中的铵根离子。基于PBFT法制备的C/N/F共掺介孔TiO2粉体中高含量的晶格C和晶格N使其吸收边红移至481nm,并在整个可见光区都有显著吸收。这赋予了粉体高的可见光催化活性。TiO2的快速沉积也使F原子(约1.0at%)被掺入到TiO2晶格中。掺F有助于增强TiO2可见光催化活性。深入讨论了PBFT法的掺杂机理,并详细研究了烧结工艺对C/N/F共掺介孔TiO2的孔洞结构、比表面积、掺杂元素含量以及光响应性能的影响。5.研究了掺杂纳米晶TiO2的磁性。纳米晶TiO2具有室温铁磁性,掺N和掺V并没有改变纳米晶TiO2的室温铁磁性本质。纳米晶TiO2晶胞参数的c/a值越大,其饱和磁化强度越大。基于该实验结果,就氧化物稀磁半导体室温铁磁性的物理起源首次提出了晶格畸变假设:晶格畸变是诱导氧化物稀磁半导体室温铁磁性的重要因数之一。