论文部分内容阅读
地震作为一种自然灾害给人类造成了巨大的损失,卫星遥感技术作为一种新型的对地观测技术被应用于地震科学的各个领域中。卫星遥感数据维度高,数据量大,传统人工分析手段已无法应对,数据挖掘方法具有强大的分析处理问题的能力。本文在这种背景下,将数据挖掘方法引入地震预测中,以2005~2014年全球AIRS遥感数据为分析对象,分别提出基于频繁项集、时间序列和主旨模式的震前异常挖掘算法。基于频繁项集的震前异常挖掘算法从属性维度处理遥感数据,针对AIRS传感器18维参量数据进行去背景和分段处理,在有效剔除地区、季节性因素的干扰同时也使得数据适用于项集挖掘;在处理挖掘得到的频繁项集时,使用地震支持度减去非震支持度,有效的去除了非震因素的干扰。实验表明基于频繁项集的震前异常挖掘算法可较好用于地震预测,并且随着地震的临近,震前异常范围不断变大。当前兆区域为2°,前兆时间为30天,分段数为5时,预测效果最佳,预报率81.8%,误报率5.6%,此时地震前兆异常主要和TropTemp_D、TropHeight_D、Surf Pres_Forecast_D、H2O_MMR_Surf_D、TropPres_D、Surf Air Temp_D和Clr Olr_D这七个参量数相关。基于时间序列的震前异常挖掘算法从时间序列角度分析遥感数据,将异常模式挖掘算法与频繁序列匹配算法融入到震前预测中,该方法不同于以往的预测建模,而是从一个全新的角度来发现震前遥感数据异常规律。首先通过对卫星遥感进行数据插值,归一化处理和数据分段,然后利用PrefixSpan算法分别挖掘出频繁序列模式,计算出地震序列模式的差集,然后利用SeqMatching匹配算法匹配测试序列,并通过反馈不断完善异常序列模式。最后通过地震预报率、漏报率以及对非震的误报率,检验方法的有效性。经过36次试验,在确定了数据参量、前兆时间、区域大小、支持度和数据分段个数等参数的基础上,发现CO含量参量的预测效果比较满意。实验表明基于时间序列的震前异常挖掘方法可以找出以往地震历史规律中蕴含的有效异常模式,通过模式匹配,较好地实现震前异常预测。基于主旨模式的震前异常挖掘算法从卫星的角度观察实验数据,将其转化为一系列以时间为单位的空间序列,针对空间序列相似性度量问题,提出一种基于空间距离惩罚度量算法CDTW。在主旨模式挖掘的过程中,基于K-Means的思想,提出一种基于全局平均主旨模式挖掘算法。实验表明CDTW将空间距离作为惩罚因子引入动态弯曲度量DTW中,避免最小距离计算过程中过度弯曲的问题;基于CDTW的全局平均主旨模式算法对AIRS的6个参数的挖掘结果可以反映出遥感数据空间序列的主旨特征,经过初步实验,该方案亦具有一定的可行性。