论文部分内容阅读
随着化石能源的不断消耗以及温室效应的日益严峻,建筑节能受到越来越多的关注,储热技术得到前所未有的迅速发展。其中,相变储能是一种具有低碳环保特性的节能手段。相变储能建筑的关键问题在于高性能相变材料的制备及其与建筑基体的结合。有机类相变材料因其储热密度大、成本较低等特点而被广泛研究,但同时存在导热性差、液相泄露腐蚀基体等缺陷,从而限制了其应用。本文针对该问题,以复配石蜡作为相变材料,研究了建筑墙体用相变材料的制备方法及其在石膏板中的应用效果,得出以下结论:(1)通过熔融混合法将固态石蜡和液态石蜡以不同质量比复配,制备建筑墙体用相变材料,通过步冷曲线法和DSC等测试手段对建筑墙体用相变材料的相变温度和相变潜热进行表征;结果表明,当固液质量比为5:5时,相变材料的相变温度和相变潜热分别为28.6℃和87.2 J/g,有效调整了其相变温度以达到建筑墙体使用要求。(2)以膨胀珍珠岩和多孔陶砂作为无机载体,基于负压吸附法,采用浸泡吸附和混合吸附两种手段制备无机多孔载体/石蜡复合相变材料;热循环测试结果显示,当膨胀珍珠岩:石蜡质量比为3:10时,50次热循环后质量损失率为0.08%;首次采用熔融共混一次成型法,通过改性手段,将相变组分与石膏浆体直接拌合制备石膏/改性石蜡定形相变材料,当改性剂掺量为石蜡质量4%、改性石蜡掺量为30%时,定形相变材料抗压强度为3.49MPa,50次热循环质量损失率仅为0.54%;对相变材料的密度、比热容、导热系数和相变焓等参数进行了测试,复配石蜡和石膏/改性石蜡在常温下导热系数分别为0.17 W·m-1·K-1和0.38 W·m-1·K-1,石膏的引入大大提高了相变材料的传热性能。(3)分别通过夹层法和混合法,将有机/无机复合相变材料加入到石膏浆体中制备相变石膏板;研究了不同成型方式、掺加不同复合相变材料时相变石膏板的强度、热膨胀体积稳定性;并建立了热性能测试模型,研究了不同相变石膏板的传热性能;掺加40%石膏/改性石蜡定形相变材料的石膏板线膨胀系数、抗压强度分别为16.5×10-6/℃和6.29MPa;较空白石膏板,以夹层法掺入石膏/改性石蜡定形相变材料时,最高降低室内温度达4.5℃。(4)利用ANSYS软件模拟分析了复合相变材料及相变石膏板的传热过程,通过温度分布云图直观描述了相变石膏板温度场变化过程;相变层的加入明显增大了石膏板的热惰性,降低了石膏板冷面温度,并延迟了冷面升温速率,相变层厚度约为15mm时,对石膏板温度延滞性最好;相变温度略高于室温时,相变材料调控温度效果更佳。