【摘 要】
:
由于团簇具有特殊的几何结构和奇特的物理化学性质以及潜在的应用前景,引起人们的广泛关注。铜团簇作为金属性团簇在催化、纳米技术和大规模集成电路制造中有巨大的应用潜力。因此,近年来对铜团簇的研究已成为一个非常热门的研究领域。在这个研究领域中,我们选取了由13个原子组成的铜团簇体系。为了获得由13个原子组成的铜团簇的最低能量结构,首先我们采用遗传算法结合Gupta多体势对Cu13团簇的几何结构进行了全局搜
论文部分内容阅读
由于团簇具有特殊的几何结构和奇特的物理化学性质以及潜在的应用前景,引起人们的广泛关注。铜团簇作为金属性团簇在催化、纳米技术和大规模集成电路制造中有巨大的应用潜力。因此,近年来对铜团簇的研究已成为一个非常热门的研究领域。在这个研究领域中,我们选取了由13个原子组成的铜团簇体系。为了获得由13个原子组成的铜团簇的最低能量结构,首先我们采用遗传算法结合Gupta多体势对Cu13团簇的几何结构进行了全局搜索和研究,并且得到了众多低能结构。在从得到的众多的初始构型出发,再利用基于第一性原理密度泛函理论的DMOL软件进一步优化这些初始结构得到最稳定结构以及一些次稳定的异构体。我们利用DMOL软件计算讨论了Cu13团簇的平均结合能、HOMO-LUMO能隙、电离能和电子亲合能等物理特性通过分析讨论得出以下主要结论:1.虽然遗传算法得到的众多结构的能量排序和第一性原理计算结果不一致,但遗传算法可提供大量的候选构型,通过采用基于密度泛函理论的第一性原理方法进一步驰豫候选构型,仍可以有效(高效)地找到Cu13团簇的真实基态几何结构,同时,也能提供较多的低激发态结构。我们认为,对于探究具有非紧致低对称性基态体系的结构优化问题,遗传算法(结合第一性原理计算)仍然具有极大的有效性。2.通过对中性及带电Cu13团簇的密度泛函计算表明:(1)中性和带(正、负)电Cu13团簇的最稳定构型并非一致;(2)对于13原子Cu团簇而言,在其结构稳定性方面高对称性结构明显无竞争性;(3)通过带电的方式可以增强团簇的基态(及低激发态)结构稳定性;(4)基态中性及带电Cu13团簇具有磁矩最小化效应:体系总电子数为奇数时总磁矩为1μB,而体系总电子数为偶数时总磁矩为0μB;即基态中性及带电Cu13团簇无自旋劈裂现象;(5)计算所得Cu13团簇的电离能及电子亲和势与实验结果符合较好。
其他文献
恒化器(chemostat)是一个基本的微生物生态开放系统模型.它是一个重要的生物数学模型.通过对微生物的持久性、灭绝性、平衡点的全局吸引性等的研究,可以通过人工控制使自然界中的生物能够持续发展,具有重要的理论意义和实际意义.本文主要研究了具有脉冲扰动的时滞双营养chemostat模型和污染环境中一类具有脉冲扰动和污染的时滞双营养chemostat模型.将主要利用脉冲微分方程的比较原理,分别得到系
本文的主要内容分为两部分:首先,我们讨论了一类具有染病年龄结构的SIRS流行病模型,运用微分方程和积分方程的理论和方法,得到了该模型的基本再生数R0的表达式,并证明了当R0 1时,无病平衡点是不稳定的,此时存在惟一的地方病平衡点.其次,我们讨论了一类具有年龄结构的SIRS流行病模型,运用微分方程和积分方程的理论和方法,得到了该模型的基本再生数R0的
恒化器(chemostat)是研究微生物连续培养的重要实验器材,具有易得性的优点,因此它可以对微生物模型进行广泛的测试和实验.另外,恒化器可以模拟许多自然现象,如湖泊和海洋的单细胞藻类浮游生物的生长,所以研究恒化器模型具有重要的生态意义.研究内容主要包括微生物的持久性,灭绝性,局部或全局吸引性,周期性等内容,这些研究有助于我们更好的进行微生物培养工作.本文主要研究了具有抑制因子的营养循环和周期脉冲
本文首先给出了非交换弱Orlicz空间范数,然后得到了相关的非交换弱LP空间中的不等式,最后得到了T-可测算于的Hardy-Littlewood极大函数的弱平均不等式和非交换弱Orlicz空间范数不等式即以下三个不等式:(a)若10Φ(t)λt(MT(|T|))≤CΦsupt
信度理论是风险理论以及非寿险精算中的一个重要分支,它是一种基于单个保单的历史经验数据以及全体保单或相似保单近期数据来厘定下一期保费的方法,这种方法被广泛应用于保险的各个领域.根据信度理论计算得来的信度保费一般为投保人个人的索赔经验数据与先验保费(或者说是类似险种保单的同期损失数据)的加权平均,加权因子即为信度因子.在信度理论中,损失函数的选取是一个关键问题.自B(u|¨)hlmann在其经典信度模
图的连通度是衡量一个图的可靠性的重要参数,而网络拓扑结构通常被模型化为图,因此,图论中的一些经典概念,如连通度和边(弧)连通度,就被用来研究网络的可靠性。为了进一步研究,人们提出了各种各样的高阶连通度的概念,如超级连通性和超级边(弧)连通性、限制边(弧)连通性、超级限制边(弧)连通性等。设G是一个有限群, S0,S1 (?)G \ {1G},T0, T1 (?)G。有向混合Cay-ley图X =
随着储氢技术的巨大发展,对于不同材料储氢的研究就显得尤为重要。储氢材料在储氢的过程中,杂质分子如水分子对储氢性能的影响有时会很大,而在实际研究中常常被人们忽略。很多种离子都能被水溶解,并且很容易和水作用形成水合物,而且形成的水合物大多都很稳定,一旦形成则很难使之分离,于是对金属离子作用下水分子吸附氢气能力的研究是十分有必要的。在本文中我们回顾了储氢材料的基本概念和当前的发展,介绍了研究储氢材料的方
1972年,Gutman和Trinajestic提出了第一Zagreb指标M1和第二Zagreb指标M2。对于一个给定的连通图G,它的第一Zagreb指标M1等于点的度数平方和,第二Zagreb指标M2等于相邻点对度数乘积的和。对于一个连通图G,在[D.M. Cvetkoci′c, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applica
离散自治两种群动力行为是生物数学研究的一个重要领域,在某些情况下比连续时间种群模型其模型更符合实际。本文研究了离散自治两种群竞争模型和比例依赖捕食-被捕食模型。利用迭代法和比较原理在适当条件下得到平衡点的全局稳定性,并且利用中心流形和分支理论我们得到更复杂的动力学行为。本文主要内容如下:第1节为引言,介绍了离散自治两种群动力行为的研究背景、目的和意义,给出了离散两种群动力行为的研究现状与成果.最后
近几年,在基因组结构和基因表达检测等领域已经取得了巨大的进展.然而,随着数据量的快速增加,需要相应的数学方法去处理和分析这些数据,特别是关于基因之间相互调控关系的微分方程模型的建立显得更为急切.本文研究了三类复杂动力网络的稳定性及分支控制,主要涉及基因调控网络模型的稳定性及Hopf分支和一类TCP/AQM网络的Hopf分支控制的研究.本文的研究内容可以概述如下:1.在第一章,我们阐述了基因调控网络