论文部分内容阅读
随着金融全球化和自由化进程的加快,金融市场的风险呈现出高关联、高频发和高损失的特点。拉美银行危机、亚洲金融风暴、美国次贷危机等一系列事件反映出金融市场的脆弱性,也引发了业界和学术界对商业银行信用风险管理的深入思考。巴塞尔银行监管委员会作为国际清算银行的正式机构,其所制定的巴塞尔协议是全球公认的商业银行监管标准。该委员会于2006年颁布了新巴塞尔协议,新协议将信用风险、市场风险、流动性风险和操作风险纳入风险计量范畴,构建了资本监管的“三大支柱”,即资本充足率、监督检查和市场约束。新协议对商业银行信贷风险管理提出了更为严格的条件,它将违约概率的测度和评估列为内部评级法的核心内容,要求各成员国银行使用内部评级法来确定风险权重和计提风险资本。同时,理论界对违约概率模型的研究也做了大量的研究,主要集中于影响违约率的关键因素的选择,并基于分类算法,以历史数据为驱动、以数学模型和统计方法为基础来建立违约概率模型。我国现代商业银行体制刚刚建立,自身的风险管理水平有限以及历史数据积累不够,尚不能满足商业银行对各种形式贷款安全性的准确测量。但是随着我国商业银行国际化程度的加深,中国银监会以新巴塞尔协议为基准,要求我国各大商业银行提升消费信贷风险管理水平,在加强违约损失率历史数据库建立的同时,着重研究贷款的违约概率。本文在现有消费信贷违约概率度量研究的相关文献进行系统综述的基础上,构建了SenV-RBF-SA和时变相依的量化模型来度量消费信贷的违约风险,采用Copula方法建立了商业银行消费信贷整体风险的度量模型,并利用商业银行消费信贷的实际数据进行实证。本文的主要工作及成果如下:首先,考虑到SenV-RBF神经网络对数据无分布要求且在处理非线性问题是表征出的特性,以及半参数Cox比例危险模型可进行违约概率的动态预测,因而构建了基于SenV-RBF-SA融合的违约概率动态模型,对借款人未来某个时点的违约概率风险进行度量;并通过商业银行消费信贷的实际数据,实证研究发现,本文构建的混合模型在判别精度和稳健性方面与传统模型相比有一定的竞争性。其次,考虑到GDP、利率、CPI、上证综合指数等宏观经济的波动给借款人带来的系统性风险的影响,本文在上述混合模型基础上,采用时变相依Cox比例危险方法构建了一类消费信贷违约概率度量模型,客观度量了宏观经济因素对借款人平均违约水平的影响,它克服了以Logistic回归模型为代表的传统模型在度量消费信贷违约概率时仅考虑个体非系统性风险的局限。最后,通过实证分析,本文提出的时变模型相比于传统违约概率模型有较高的准确率和稳健性,这是对第三章研究的一个拓展。最后,本文通过研究提前还款与实质性违约之间的相依关系,基于Copula方法建立了二者间的整体违约风险的度量模型。我们依据非参数核密度方法估计出两组信贷产品的生存时间的边际分布;然后对每一个生成的Copula相依结构采用QQ图和Kolmogorov-Smirnov检验挑选出最优的Copula;再利用之前已获得的违约边际分布,基于Copula相依测度思想,从而构建构建了一种新的相依违约度量模型;最后给出基于Copula相依性违约测度的Kendall的秩相关系数,并进行了实证研究。