静电-布袋复合除尘器去除细微粒子实验研究

来源 :北京工业大学 | 被引量 : 0次 | 上传用户:azsxdcfvgb0987654321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
长期以来,静电除尘器和布袋除尘器一直都是我国烟气除尘领域的主力军。静电除尘器因综合性能较高,得到了广泛的应用。然而,静电除尘器对细微粉尘的除尘效果并不理想,特别是对粒径范围在0.1~1μm的亚微米颗粒,除尘效率不足85%。这些超细颗粒物对人体危害极大,同时又严重污染环境,并对气候造成影响。布袋除尘器对细微粒子有很好的收集效果,却又存在压降高,滤袋寿命不长等缺点。因此,研究和开发适合需要的新型除尘设备不仅是工业生产的需要,也是国家对环境保护的要求,本课题正是针对这种情况提出的。   本文提出了一种新型的电袋复合方式-预荷电与静电增强协同布袋过滤器,对其除尘性能进行了理论分析,并利用这种新型的除尘器对2500目的超细滑石粉进行了实验研究。实验对比了新型的除尘器、预荷电除尘器、静电增强除尘器三种不同电袋复合方式的除尘性能,得到了电场强度、气布比、压损、清灰周期、除尘效率等参数的变化规律;并与传统的布袋除尘器除的尘性能进行对比。实验结果表明,不同的加电方式都不同程度的提高了布袋除尘器的除尘效率,降低了过滤风速对除尘效率的影响,降低了运行阻力。   预荷电和静电增强协同作用时,粉尘在进入袋室之前就被荷电,通过在滤料表面施加较强的静电场,使得被处理粉尘在滤料的表面有序堆积和排列,能有效的降低压力损失,提高过滤风速,除尘效率均达到99%以上。vf=3.5m/min,U=12.3kV时,两种措施协同作用与普通布袋过滤相比压力损失降低了90Pa;粉尘的通过率降低了7.6倍;清灰周期从10min延长至36min,延长了3倍。   实验证明,这种新型的电袋复合除尘器弥补了电除尘器和布袋除尘器各自的缺陷,具有除尘效率高、运行阻力低、清灰周期长等优点,具有一定的科学研究和商业应用价值。
其他文献
颗粒物来源广泛、成分复杂、污染形式多样、危害较大,是长期影响我国城市空气质量的首要污染物。我国经历了三十多年的颗粒物污染防治实践,在颗粒物固定源污染控制上取得了显
学位
日常生活中,人们对电动汽车和便携式电子设备的兴趣不断飙升,为了满足实际需求,开发新能源存储设备,是我们必须研究的重要课题。超级电容器,又称为电化学电容器,因其具有与锂离子电池和燃料电池互补的优点,例如,高的功率密度、快速的充放电性能、较长的使用寿命、较高的安全性和环境友好兼容性等,已经成为人们设想最有发展前途之一的新能源存储设备。然而,许多电池电极材料其本身具有较低的导电率和储能容量以及较差的倍率
随着我国经济的迅速发展,人口的增加,人民生活水平逐步提高,工业化和城市化步伐的加快,用水量急剧增加,污水排放量也相应增加,对于一个干旱缺水严重的国家,这更加加剧了我国
学位
环境污染越来越严重,人类各种疾病频发,使得人们越来越重视环保和健康问题,大力提倡环境友好型涂料已是刻不容缓。水性涂料作为一种重要的环境友好型涂料,不仅含有非常低的挥发性有机化合物(VOC),而且拥有绿色环保、安全无害、节约资源和能源等优点,将会逐渐替代溶剂型涂料。水性丙烯酸涂料既有溶剂型丙烯酸的优良特性,又符合安全环保的要求,具有十分广阔的发展前景。然而丙烯酸涂膜在高温下发粘、低温下变脆,耐水性、
学位
继碳纳米管的发现,无机富勒烯纳米管(二硫化钼、二硫化钨纳米管)具有类似的层状结构,已有研究表明应用碳纳米管制备复合材料,其力学性能和电性能均得到不同程度的提高。MoS2
碳点(CDs)是一种尺寸小于10 nm的新型荧光纳米粒子,自2004年CDs被报道以来,已经吸引了广大科研工作者的兴趣和关注。CDs具有极好的生物相容性、优秀的荧光性能、稳定的化学和物理性质、低毒性、极佳的水溶性等性质,大大拓展了CDs的应用领域和范围。目前,CDs的制备方法主要有,激光蚀刻法,电化学法,模板法等,这些方法存在原料价格高,设备价格昂贵或者实验操作复杂等缺陷,因此,急需一种操作简单,
高压铸造(简称HPDC)是金属液在高压、高速条件下成型的先进工艺,可以制造结构复杂、薄壁深腔的金属件。该工艺生产的零件具有尺寸精度高、轮廓清晰、结构组织致密等特点。该
对于锂离子电池来说具备高效储能一直是一个长期存在的科学技术问题,是全球共同面对的难题。而将便携式电子产品、电力汽车以及电力系统逐渐向小型化和高容量方向转换是驱动锂离子电池研发的强大动力。可充电的锂离子电池被认为是最有前途的能量存储设备之一,并且是固定能量存储系统如消费产品、智能电网和电动车辆电池的优先候选者。然而,作为已被广泛使用的阳极材料,石墨烯表现了相对较低的理论储锂容量(372mAh/g),
印制电路板(PCB)是电子信息产业的关键基础材料,“高频高速”是其发展方向,而高性能树脂是PCB实现这一发展方向的物质基础。双马来酰亚胺(BMI)、氰酸酯(CE)和双马来酰亚胺-三嗪
自从发现氧化铝、氧化锆陶瓷有着优良的物理和化学性能以来,将两者复合便成为研究的重点。通过研究陶瓷材料的韧强化机制,提出了多种强韧理论,如颗粒弥散增韧,相变增韧、显微