带有位置偏好的泊位分配问题研究

来源 :华东师范大学 | 被引量 : 1次 | 上传用户:super4ok
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经济全球化下,水路运输的规模迅速增长,码头自动化建设的需求也日益强烈。泊位分配问题(Berth Allocation Problem,简称BAP)是给在码头作业的船只合理分配其停靠位置和作业时间,以提高码头整体的工作效率。在码头作业过程中,船只往往对停靠位置具有偏好,因此本文基于实际情况着重研究了带有位置偏好的泊位分配问题。本文第一章介绍集装箱码头的发展概况和泊位分配问题的研究现状。第二章研究静态到达时间下带有位置偏好的泊位分配问题,把该问题转化为二维带状装箱问题,建立了混合整数线性规划模型,采用数学规划求解器Gurobi进行求解,并使用Beam Search将两种装箱策略结合,设计了新的启发式算法。数值实验表明启发式算法求解时间不超过Gurobi的10%,同时平均偏差百分比低于5%。第三章研究动态到达时间下的泊位-桥机联合分配问题,并且考虑潮汐因素的影响,建立了整数线性规划模型,利用Gurobi进行求解并将结果可视化。为加快求解速度,本文基于遗传算法设计了新的求解方案,阐述关键步骤的设计思路。数值实验结果显示了遗传算法的有效性,求解时间仅为Gurobi的10%,且平均偏差百分比不超过11%。
其他文献
现代人们大部分时间都在室内环境中度过,例如家庭、办公室、购物中心、大学、图书馆和机场。然而,很多现有的基于位置的服务都只针对室外空间而设计,这主要是因为全球定位系统等定位技术无法准确识别室内场馆的位置。然而近年来室内定位技术的突破开始逐渐克服了这一难题,为研究机构、政府机构、技术巨头和有进取心的初创企业带来了巨大的未来机会——可以充分挖掘室内基于位置的服务的潜力。因此,室内数据管理在过去几年中获得
学位
密度聚类被广泛用于模式识别、信息检索、图像分析、复杂网络分析等众多领域来识别真实世界数据集的隐藏结构。目前的密度峰算法往往只能处理结构化的完整数据,很多情况下表现不佳。其一,现实世界中的数据往往存在缺失或错误值,对于这样的不完整数据集,目前的处理方法是进行数据插补,然后采用传统聚类方法进行处理,这样导致精度下降,并且插补后的点的‘聚集现象’可能导致密度峰聚类失效。其二,对于更常见的半结构化数据,往
学位
点云可用来描绘物体在三维空间中的形状,被广泛应用于自动驾驶、质量检测、结构可视化以及动画渲染等领域。随着深度学习技术的发展,人们逐渐将视角从二维视觉转向三维视觉,点云由于能够最大限度地保留物体的几何信息,因此成为研究该问题的首选。近些年来,在大规模三维点云上展开的深度学习工作已经取得了巨大的进展。然而,点云中专门面向小目标的语义分割仍然是该领域的挑战之一,许多问题亟待解决:(1)小目标所承载的语义
学位
联邦学习作为当下人工智能技术的热点,可以解决“数据孤岛”问题。然而,现有的联邦学习方案面临一些问题,例如,如何保证上传的模型更新的隐私,如何避免不可靠的模型更新,以及如何鼓励参与者贡献他们的资源。为了解决这些问题,本文制定了相应的设计目标,提出了一种隐私保护的评估机制来选择可靠的模型更新。考虑到参与者不可能无条件的贡献自己的资源参加联邦学习,本文制定了相应的设计目标,设计了一种基于强化学习的公平激
学位
监督过失不是过失的新类型,而只是在预见可能性程度上有所降低的特殊过失形态。监督过失可归责的正当性根据,在于劳动分工基础上维护社会有机团结的要求。监督过失理论研究对我国司法实践的意义,在于对监督者加重处罚并限制其处罚范围。监督过失处罚并不违反责任主义,也并非是风险社会下预防刑法的典例,对监督过失的研究仍未脱离传统刑法理论的范畴。我国司法实践呈现出三元监督主体归责倾向,实务中存在注重责任的划分而非归责
学位
知识追踪(Knowledge Tracing)是用来评估学生对知识点掌握程度,从而预测学生对特定习题能否回答正确的人工智能与教育学领域相融合的一项技术。近年来,随着在线教育平台的不断增多,对于个性化学习的需求也越来越迫切。知识追踪可以追踪学习者的知识状态,并且学习路径推荐可以根据知识追踪的预测结果来对于学习者的学习过程进行个性化规划与推荐,以满足适应每个学习者的学习需求。尽管对于知识追踪和学习路径
学位
深度学习的成功源于大量的标记数据,与之不同的是,人类仅仅通过少量的样本就具有很好的认知识别能力。两者之间的差异引发了人们对小样本学习极大的关注和研究。与传统的深度学习场景相比,小样本学习是根据新任务中少量的标签数据(支撑集)和以往获得的知识预测新任务中未标注的数据(查询集)。近年来,小样本学习方法借助元学习和情景训练策略,取得了长足的进步。其中情景训练策略是随机的从数据集中构造一个个元学习任务进行
学位
大规模文本数据在丰富人们信息生活的同时也对如何更好地管理它们,挖掘其价值提出了挑战。聚类分析作为一种无监督学习方法,提供了一种不依赖标注信息,仅依靠数据本身的特征来识别数据分布模式的方案。文本聚类是自然语言处理的一个重要分支,已经有了一些成功的应用。例如,它可以把问答平台、社交媒体上用户发布的大量文本自动归入不同的主题,从而减轻平台的负担;可以将文献数据库中作者名存在歧义的论文自动划分为不同作者的
学位
近年来,机器学习因其优越的计算能力,在安全领域展现出了巨大的发展前景。与此同时,机器学习的可解释性问题也成为了人们所重点关注的问题,可解释性能够揭示机器学习的决策原理,增强其可靠性,帮助模型优化,具有很大的意义。然而,目前大部分可解释性方法仍视机器学习模型为黑盒模型,并未深入其内部进行分析,具有较大的局限性。树模型因其非线性结构,较神经网络模型更加难以分析,鲜少有针对树模型的可解释性分析,因此,针
学位
近年来,高校与学生之间因惩戒而引发的诉讼不断。我国目前阶段关于高校惩戒的立法和司法解释尚不完善,厘清高校惩戒的概念、法律性质,是该类纠纷获得司法救济的理论前提。高校非学术性惩戒权源于法律法规的授权,学术性惩戒权来源于高校办学自主权,不论是高校学术性惩戒权还是非学术性惩戒权,高校惩戒权在法律性质上都属于公权力。田永案打开了我国司法介入高校纠纷的大门,但司法介入高校惩戒的范围和审理标准一直是争论不休的
学位