【摘 要】
:
化学链技术能够提高能量利用效率、降低氮氧化物排放,具有独特的CO2内分离特性,是一种清洁高效的能源转化手段。Cu基载氧体和Fe基载氧体是化学链中常用的载氧体,Cu与Fe复合可以改善Fe基载氧体的反应活性,且能抑制Cu的烧结,具有良好的协同作用。DFT可以从分子层面描述载氧体自身的结构变化以及其与固体燃料之间的反应,对深入探究协同机理,设计更优的载氧体具有重要意义。本文建立了煤焦模型和氧化铁团簇模型
【基金项目】
:
国家自然科学基金项目“基于刻蚀特性调控的多金属协同催化气化机制研究”51976047
论文部分内容阅读
化学链技术能够提高能量利用效率、降低氮氧化物排放,具有独特的CO2内分离特性,是一种清洁高效的能源转化手段。Cu基载氧体和Fe基载氧体是化学链中常用的载氧体,Cu与Fe复合可以改善Fe基载氧体的反应活性,且能抑制Cu的烧结,具有良好的协同作用。DFT可以从分子层面描述载氧体自身的结构变化以及其与固体燃料之间的反应,对深入探究协同机理,设计更优的载氧体具有重要意义。本文建立了煤焦模型和氧化铁团簇模型,对两者的可能反应路径进行搜索。每条路径都可分为氧传递、氢转移、气体脱附这三个过程,由路径能量可知,Fe基载氧体化学链反应生成CO2所需能量较高,不易发生,其易于生成CO。选取最优路径,与Cu4O4-Char路径进行对比,发现Fe基载氧体的传氧能力较弱,但其与煤焦的作用更紧密,可以促进焦炭上苯环的碳碳键断裂,降低碳氧复合物的脱出能垒,这可能就是Fe对化学链反应的催化作用。对Cu-Fe复合载氧体化学链反应过程进行研究。建立Cu-Fe复合载氧体团簇模型,搜索其与煤焦的可能反应路径,得到能量更低的最优反应路径,从该路径整体能量上看,Cu原子的加入降低了整体反应的吸热量,有利于化学链系统的运行。在氧传递过程中,Cu原子提高了团簇的传氧能力,能够将氧直接传递到焦炭上;在气体脱附过程,团簇中的Fe原子与焦炭接触反应,促进碳碳键断裂过程,生成CO。对Cu-Fe复合载氧体对反应过程的协同作用机理进行研究。计算统计各团簇的自旋密度和氧空位形成能,发现Cu原子可以增加氧的自旋密度,提高其反应性,并且可以降低氧空位形成能,促进氧的脱除。对断键过程进行键级分析和畸变/相互作用-激活应变模型分析,发现在同一反应程度下,Fe参与的断键过程中的碳碳键级小于Cu参与的过程,且Fe原子与焦炭的相互作用要强于Cu,这说明Fe可削弱碳碳间的作用强度,降低断键能垒。两种金属在化学链反应中的不同阶段发挥各自的催化特性,体现了Cu-Fe复合载氧体的协同作用。
其他文献
FeSiAl软磁粉芯广泛应用在变压器线圈、谐振电感以及电机磁芯中。随5G高频时代的到来,电子电力领域对软磁材料的需求日益增长,但其较高的磁损耗尤其是涡流损耗严重限制了其在高频领域中的应用。本综述从工程技术的角度出发,以FeSiAl为主要对象,介绍了其扁平化技术和表面绝缘层包覆技术的最新进展,并重点对绝缘包覆层的形成机制、组织结构和外观形貌变化以及高频场下复合磁粉芯的特性进行归纳总结。FeSiAl扁
K4169高温合金是一种沉淀强化型Ni-Cr-Fe基铸造高温合金,在中高温下具有较高的强度、塑性、优良的耐热腐蚀性、耐辐照性等性能,被广泛用于航天航空发动机的涡轮盘、机匣等结构件。但是K4169合金在焊接时热影响区极易产生液化裂纹。本文对不同焊前热处理状态下K4169合金电子束焊接头热影响区液化裂纹的敏感性和产生机制进行了研究,通过焊前热处理和优化焊接工艺对接头热影响区液化裂纹进行控制,同时对不同
氮化硅陶瓷(Si3N4)因其出色的力学性能和热稳定性,在室温和高温下都具有良好的应用前景。但由于其具有脆性断裂的特点,加工性能差,在制备结构复杂的氮化硅部件方面仍然面临技术上的挑战。利用活性金属钎焊技术将陶瓷-金属进行连接能在一定程度上解决这一问题。但Si3N4与金属之间的较大的热物理性能差异(尤其是热膨胀系数)使得钎焊后的接头中存在较大残余应力,导致接头力学性能变差。因此缓解接头残余应力对提高陶
随着飞机飞行马赫数和增压比不断增大,对航空发动机的冷却系统提出了更高要求。目前,采用航空燃油作为冷源对航空发动机中子系统进行冷却是一种可靠且高效的冷却方法,但是航空燃油在受热至150℃之后会发生热氧化结焦反应,会在管道内部产生结焦。本文在分析国内外热氧化结焦的研究基础上,以增强管道换热性能和减少管道结焦为目的,以蛇形管作为研究对象,通过理论分析、实验研究和仿真计算相结合方式对蛇形管内航空燃油的氧化
随着科学技术的进步,发展具有多功能、低功耗、高精度、高可靠性的微型智能化器件成为了科技发展的新趋势。在空间技术、生物医疗等领域,钛合金因其优异的物理性质和生物相容性成为应用十分广泛的金属材料。高效地在钛合金材料上加工具有一定精度和表面质量的微小结构成为发展的关键。因此,为了拓展钛合金材料在微细加工领域的加工工艺,本文开展的针对钛合金材料的微细电火花铣削和微铣削组合加工工艺的研究。本文根据Ti-6A
保加利亚乳杆菌被用于世界范围内各种发酵乳制品的生产,其在作为发酵剂的制备过程中,以及在实际的发酵过程中,渗透压、温度、p H和营养可用性的波动会限制菌体的分裂增殖能力从而降低其发酵性能,影响乳制品的质量和风味。目前,保加利亚乳杆菌在乳品发酵工业中常处于盐胁迫环境中,涉及乳酸菌盐胁迫下分裂机制的研究仅是对代谢相关基因和蛋白质变化的分析,而对菌体响应盐胁迫环境对分裂体的作用鲜有研究。本文通过研究保加利
氟化硼二吡咯甲川(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene,BODIPY)荧光染料具有优良的光化学和物理特性,引起了研究学者的广泛关注。但是因其吸收和发射谱的波长短,荧光量子产率偏低等缺点,使其在实际应用方面受到限制。因此,优化设计优良光学性能的新型BODIPY荧光染料具有重要意义。本论文通过密度泛函理论分析了取代基与杂原子在扩大的π共轭体系中对BODI
碳钢作为一种重要的工程材料,具有较低的成本,较好的力学性能,广泛应用于各个领域,但其极容易发生腐蚀,会明显降低碳钢产品的使用寿命,提高产品维护成本。针对这一问题,本文在碳钢表面制备聚二甲基硅氧烷/硅藻土超疏水涂层,对其进行有效的腐蚀防护,并且通过添加纳米填料使涂层的综合性能进一步提高。研究了聚二甲基硅氧烷与硅藻土的比例、溶剂体积、浸涂次数三个工艺参数对涂层微观组织结构的影响规律,探讨了涂层形成机制
茂金属聚丙烯材料(mPP)是一种发展迅速的热塑性合成树脂,凭借其密度小、无毒、易加工成型和机械性能优良等优点,已经深入人们生活中的各个领域,包括出行、家用以及生产如家用电器、汽车行业、建筑行业等,这也促成聚丙烯成为我国第二大消费产品。由于我国能源结构主要包括煤炭、石油以及天然气,由于能源的不断消耗和大量使用,需要对我国的能源结构进行优化,对聚丙烯行业的需求也慢慢有所提升。与以往的石油需求相比,如今
化石能源供应的紧缺性和日益严重的环境问题迫切要求寻找一种可持续的绿色能源。氢能被认为是解决这一问题的最具潜力的替代能源之一。电解水是一种绿色高效的制氢法,但由于电解水的两个半反应,析氢反应(Hydrogen evolution reaction,HER)和析氧反应(Oxygen evolution reaction,OER),存在较高的能垒,目前电解水产氢的效率并不高。虽然Pt基和RuO2/Ir