论文部分内容阅读
有机共轭分子中通常含有多个共轭π电子,π电子跃迁的能量一般在1.5 eV4.0 eV,对应于紫外-可见光光子的能量,因而被称之为生色团。共轭分子聚集态下生色团间的相互作用对光电性能具有重要的影响;但是,聚集态是大量微观分子形成的宏观聚集体,每个分子与周围的多个分子相互作用,分子间的距离及方位多种多样,直接讨论分子聚集结构对光电性能的影响规律比较困难。将生色团分子通过化学键链接形成二连分子可以构筑结构明确的二聚体聚集模型,是研究生色团之间的作用模式与基态及激发态性能关系的理想策略。苝酰亚胺(PDI)具有大的π共轭结构,是一类重要的有机染料,在光电领域也有非常广泛的研究。本论文以PDI分子为构筑单元,通过共价键将相同的和不同的PDI单元连接到一起,形成二连分子,进一步利用稳态与瞬态光谱技术研究了二连分子的基态与激发态特征,总结得到了分子连接方式、分子构象以及给受体能级结构等因素对光诱导电子转移的影响规律。1.通过N-N共价键头尾连接的PDI二连分子体系。利用四苯氧基取代的单体PDI 1、二苯基取代的单体PDI 2以及无取代的单体PDI 3作为构筑单元,合成了1-1、2-2、3-3、1-3、2-3五种苝酰亚胺二连分子。稳态吸收光谱显示1-1、2-2、3-3等由相同结构单元构成的二连分子与单体分子比较,具有吸收光谱红移,摩尔吸光系数增强幅度超过两倍,吸收峰半峰宽窄化,0-0跃迁较0-1跃迁显著增强等明显的特征,表明生色团之间具有典型的J-型耦合性质。上述三种二连分子在二氯甲烷中表现出截然不同的荧光性质,基本规律是含有扭曲结构单元的二连分子荧光效率较单体分子显著降低,而由平面结构单元组成的二连分子荧光效率与单体相近。瞬态吸收光谱研究发现光激发引起1-1、2-2、3-3的打破对称性电荷分离(Symmetry-Breaking Charge Separation,SB-CS)的难易程度依次增大。综合分析发现光激发引起的SB-CS与单体分子构象密切相关,具有扭曲结构的单体具有丰富的激发态构象,激发态弛豫会引起生色团之间相对转动,增加相邻羰基之间的相互作用,从而使得电子通过羰基相互作用发生转移。非对称二连体分子1-3在二氯甲烷中,由于更大的电荷分离能以及扭曲单体PDI 1的存在,具有超快电荷分离特征(τCS=14 ps)。另外,研究发现1-3在甲苯中从3单元到1单元的F?ster能量转移效率接近100%,远高于2-3分子60%的能量转移效率。2.通过bay区C-C共价键侧边相连的PDI二连分子体系。利用1-苯基的PDI(PhPDI)、氧化扣环的1-苯基的PDI(RPDI)和无取代PDI为构筑单体,合成了PDI-PDI、PhPDI-PDI、PhPDI-PhPDI、RPDI-PDI、RPDI-RPDI五种bay区C-C共价键侧边相连的二连分子。稳态吸收光谱显示这五种二连分子与单体分子比较,具有吸收光谱红移,摩尔吸光系数变小,吸收峰半峰宽展宽等现象,表明生色团跃迁偶极矩之间具有典型的交叉耦合性质。稳态发射光谱显示五种二连分子与单体分子比较,具有非常大Stokes shift,随溶剂极性变大,发射光谱红移,量子效率下降。结果表明在甲苯中可以发生电子转移,形成电荷转移态。由PhPDI和PDI构筑的二连体的电子转移时间在10-30 ps之间,荧光量子效率(PLQY)低。而含有RPDI单元的二连体,低能激发态下量子效率高,在高能激发下,荧光量子产率接近100%。瞬态吸收光谱研究表明RPDI分子更加刚性,有利于形成新的高荧光构型。在高能激发态下,更容易克服构型转变势垒从而形成高荧光的分子构型,因此荧光效率接近100%。本论文通过构筑两大类苝酰亚胺及其衍生物的二连体分子,详细讨论了二连体分子中生色团构象、生色团连接方式以及生色团能级差异等分子结构与电子结构对分子光电性能的影响,利用稳态与瞬态光谱技术研究了光诱导电子转移过程及其规律,这些研究对深入认识共轭分子体系的激发态过程,以及进一步发展高性能的光电功能材料体系具有一定的指导意义。