论文部分内容阅读
包层作为聚变堆关键部件,承担着产氚、核热提取、中子屏蔽等重要的涉核功能。水冷陶瓷增殖剂(WCCB)包层是中国聚变工程试验堆(CFETR)一个候选包层概念。基于蒙特卡洛程序MCNP和IAEA聚变评价数据库开展中子学模拟分析表明,其设计满足氚自持的目标。为了评估WCCB包层的中子学特性和设计的工程裕量,需要开展实验模块设计和实验测量技术研究。使用DT中子源开展WCCB包层小模块中子学积分实验和相关的实验测量技术研究,获得包层产氚率、单核反应率等积分参数的理论值和实验值比值(C/E比),对检验包层概念设计的可靠性、评价包层概念的综合性能有重要意义。
本文首先针对200MW聚变功率下的WCCB包层特征,开展中子学缩比实验模块的设计。在保持中子学特点、几何材料相似性的基础上,确定了实验模块径向材料布置依次为钨、第一壁、氚增殖区、中子倍增区、冷却板、氚增殖区、中子倍增区、冷却板。随后针对氚增殖剂层数、钨铠甲、数据库、氚增殖剂厚度对实验模块关键参数的影响进行了敏感性分析。为更好的体现原有包层采用球床增殖剂的工程特点,将板状钛酸锂密度优化为单元钛酸锂球床密度,最终确定实验模块的几何尺寸为210.0mm(环向)×210.0mm(极向)×193.0mm(径向),对优化的实验模块进行中子学计算,预测其中子通量、氚产生率及活化水平。
随后对模块中子学实验中涉及的活化法测量技术及理论方法进行了研究。开发了基于NJOY的多群截面迭代加工程序、基于反卷积算法的中子能谱解谱程序。分别在252Cf中子场和DT中子场下进行实验,其中在DT中子场下单核反应率的C/E比为0.96~1.05,对所确定的活化法测量技术路线进行不确定度实验研究,在DT中子源项下使用活化法测量的不确定度约为5.06%。结合活化法测量结果,采用基于反卷积算法的解谱程序对各中子场下活化箔区域进行解谱,其中DT中子场石墨慢化体下的解谱结果验证了群截面加工和解谱程序的可靠性。
基于验证的活化法测量技术,开展了DT中子发生器环境下的缩比实验模块的中子学实验。利用Au、In、Al、Ti、Mg、Zr几种活化箔进行了反应率的测量,结果表明,热中子主导的197Au(n,g)198Au反应的C/E比范围在0.93~1.03,高能中子主导的90Zr(n,2n)89Zr反应的C/E比的范围在0.90~1.07。通过与微型锂玻璃、钛酸锂陶瓷片等其他测量技术进行对比,结果显示了活化法与其他测量技术的一致性。
本文通过开展WCCB包层缩比模块中子学实验,较为系统地进行了包层中子学实验层面的活化法测量技术研究,相关参数的C/E比结果增强了包层中子学设计的信心,为后续中子学实验中基于活化法中子测量的开展奠定了基础。
本文首先针对200MW聚变功率下的WCCB包层特征,开展中子学缩比实验模块的设计。在保持中子学特点、几何材料相似性的基础上,确定了实验模块径向材料布置依次为钨、第一壁、氚增殖区、中子倍增区、冷却板、氚增殖区、中子倍增区、冷却板。随后针对氚增殖剂层数、钨铠甲、数据库、氚增殖剂厚度对实验模块关键参数的影响进行了敏感性分析。为更好的体现原有包层采用球床增殖剂的工程特点,将板状钛酸锂密度优化为单元钛酸锂球床密度,最终确定实验模块的几何尺寸为210.0mm(环向)×210.0mm(极向)×193.0mm(径向),对优化的实验模块进行中子学计算,预测其中子通量、氚产生率及活化水平。
随后对模块中子学实验中涉及的活化法测量技术及理论方法进行了研究。开发了基于NJOY的多群截面迭代加工程序、基于反卷积算法的中子能谱解谱程序。分别在252Cf中子场和DT中子场下进行实验,其中在DT中子场下单核反应率的C/E比为0.96~1.05,对所确定的活化法测量技术路线进行不确定度实验研究,在DT中子源项下使用活化法测量的不确定度约为5.06%。结合活化法测量结果,采用基于反卷积算法的解谱程序对各中子场下活化箔区域进行解谱,其中DT中子场石墨慢化体下的解谱结果验证了群截面加工和解谱程序的可靠性。
基于验证的活化法测量技术,开展了DT中子发生器环境下的缩比实验模块的中子学实验。利用Au、In、Al、Ti、Mg、Zr几种活化箔进行了反应率的测量,结果表明,热中子主导的197Au(n,g)198Au反应的C/E比范围在0.93~1.03,高能中子主导的90Zr(n,2n)89Zr反应的C/E比的范围在0.90~1.07。通过与微型锂玻璃、钛酸锂陶瓷片等其他测量技术进行对比,结果显示了活化法与其他测量技术的一致性。
本文通过开展WCCB包层缩比模块中子学实验,较为系统地进行了包层中子学实验层面的活化法测量技术研究,相关参数的C/E比结果增强了包层中子学设计的信心,为后续中子学实验中基于活化法中子测量的开展奠定了基础。