【摘 要】
:
燃烧室火焰筒头部结构对燃油雾化、油气混合、燃烧过程具有决定性作用,火焰筒头部结构设计是完成燃烧室设计和决定燃烧室性能的关键。导流板作为火焰筒头部的一部分,其结构参数对燃烧室内流动和燃烧组织有较大的影响。本文针对火焰筒头部导流板烧蚀问题,采用理论分析、数值模拟、试验研究相结合的方法,开展火焰筒头部冷却方案、导流板冷却方案等设计及其影响回流燃烧室流场、点火、熄火、温度分布、火焰筒和导流板壁温等燃烧特性
论文部分内容阅读
燃烧室火焰筒头部结构对燃油雾化、油气混合、燃烧过程具有决定性作用,火焰筒头部结构设计是完成燃烧室设计和决定燃烧室性能的关键。导流板作为火焰筒头部的一部分,其结构参数对燃烧室内流动和燃烧组织有较大的影响。本文针对火焰筒头部导流板烧蚀问题,采用理论分析、数值模拟、试验研究相结合的方法,开展火焰筒头部冷却方案、导流板冷却方案等设计及其影响回流燃烧室流场、点火、熄火、温度分布、火焰筒和导流板壁温等燃烧特性,获得结论如下:(1)针对回流燃烧室基准模型,研究发现:回流燃烧室主燃区流场呈现非对称结构,火焰结构呈现“月牙”状;随着油气比的增加,导流板壁面温度增加,同时,上下导流板中心轴线位置处的壁面温度较高,两侧壁温度较低。贫油点火和熄火对应油气比随着压损的增加而降低。外火焰筒壁面中间区域温度较高,两侧壁面温度较低。随着油气比的增加,下火焰筒壁面温度增加,与上火焰筒壁温相比,下火焰筒壁面温度有整体上升趋势。(2)开展了不同火焰筒头部冷却孔排列布局及结构尺寸对燃烧特性影响研究,在保证火焰筒流量分配基本不变的情况下,头部孔倾角的改变不会对燃烧室流场造成较大影响,只对局部近壁面处周围的流场带来一定的影响。对于30°方案,冷却气流直接作用于导流板过热区域,局部热点较小。将头部冷却孔位置向中心位置靠近布置一定程度上能够降低导流板壁面温度。(3)开展了不同导流板冷却方案对燃烧室性能影响研究,研究发现:冷却气流沿壁面垂直流入以及较多的气流与主流混合都会有较差的冷却效果。减小导流板上壁面处的冷却孔孔径,增大下壁面处的冷却孔孔径,可以有效使用冷却气流,另一方面,改变冷却孔的角度以及位置,使气流能够贴壁流动,形成较好的保护气膜,使导流板壁温分布良好。(4)开展了不同火焰筒头部导流板组合冷却方案对燃烧室性能影响研究,研究发现:在过热区域增加冷却孔,壁面温度进一步下降。优化设计得到组合八冷却方案为优化冷却方案,优化的头部方案(位置三方案)和优化的导流板方案(导流板c方案)组合并不优化组合方案,头部方案与导流板方案存在一定的匹配关系。(5)通过PIV以及火焰自发辐射测量,发现基准方案与优化方案的流场结构保持不变、火焰结构基本相同,在保证火焰筒流量分配基本不变的情况下,导流板结构的变化不会对燃烧室流场、火焰结构造成较大影响。
其他文献
推进剂贮箱是液体火箭发动机结构的重要组成部分,是液体火箭推进剂唯一的贮存及运输装置。推进剂贮箱内部除了推进剂外,还需填充增压气体,使推进剂的出口压力及流量满足发动机的要求,故贮箱内部存在气液两相;在贮箱出流末期,液面通常会发生塌陷现象,以及火箭工作过程中的扰动使贮箱产生的起漩现象,容易导致输送管内夹气,造成发动机不能正常工作,剩余的推进剂将不可使用,故对液体火箭推进剂贮箱出流起漩塌陷现象及其抑制措
作为航空发动机的重要组成部分,转子系统的动力学特性直接影响航空发动机工作的稳定性和安全性。在航空发动机转子系统设计过程中,一般预先利用与其动力特性相似的试验转子对其进行动力特性评估,进而指导转子的结构设计。本文对转子系统动力特性相似设计方法进行了深入的研究,并利用某型发动机转子系统的相似设计对本文方法进行了验证,在此基础上,开发了优化相似设计软件。本文主要研究成果及结论如下:(1)基于坐标系转换和
空气涡轮起动系统现适用于绝大多数大型民用飞机和部分军用飞机,系统主要有三部分构成:辅助动力装置(APU)、引气管路以及空气涡轮起动机(ATS),其工作过程是APU输出引气通过飞机的引气管路至ATS进口带动空气涡轮输出功率经减速器减速增扭带转发动机,从而实现发动机的起动过程。本文根据APU、引气管路以及ATS在起动过程中的工作性质分别建立了这三部分的数学模型,并对其完成了匹配计算和性能分析。本文研究
电动燃油泵是多电发动机的关键技术之一,其实现电机与泵一体化,直接用电机驱动泵。相较于依靠附件机匣驱动的传统燃油泵,应用电动燃油泵能为发动机减少附件,减轻重量。且可以直接通过调节电机转速来调节流量,减少功率损失。为了提升泵的性能,要求泵朝高速、高压、轻量、高功率密度方向发展。转速越高,气蚀问题越严重;工作压力越高,泄漏越严重;同时,在保证强度的前提下,要将泵的重量降低,对材料及设计的要求也更高。本文
航空发动机作为一类强非线性系统,工作在不同进口条件与状态时的动态特性差异大,为获得良好的控制性能常常采用增益调度控制方法。传统的PI增益调度控制方法是通过试凑法得出,求解耗时长且会导致控制器切换不连续,难以满足高性能、高精度控制器的设计理念要求。T-S模糊系统是由多个子系统通过模糊推理构成的全局系统,其独有的分段线性特点十分适合诸如发动机、导弹、飞行器这类动态特性变化大的非线性对象。为此,本文以涡
本文通过原位观测试验、材料表面损伤表征、晶体塑性有限元模拟等方法,研究了定向凝固合金在中高温下不同晶向的疲劳损伤机理。首先对定向凝固板材取样,通过扫描电镜和纳米压痕确定了材料的晶向和基本力学参数。随后开展原位观测的拉伸疲劳试验,设置了两种不同晶向和300℃、600℃共四种工况,并实时捕捉到了疲劳裂纹的萌生及扩展过程。发现裂纹主要萌生在应力集中的危险区域,裂纹的扩展行为受到主导滑移系的影响且同一试件
航空发动机气路故障诊断技术是提高发动机安全可靠运行的重要途径,本文以某型双转子涡轴发动机为研究对象,将人工智算法应用于发动机气路故障诊断领域,研究了气路故障智能诊断技术。针对传统涡轴发动机自适应模型中,因线性模型与真实发动机不匹配而产生过大建模误差从而导致滤波精度低的问题,建立了体现涡轴发动机个体特性的动态身份证模型。首先建立了含气路部件健康因子的状态变量模型,基于卡尔曼滤波算法设计了状态估计器,
航空发动机在工作的过程中主要气路部件会逐渐发生退化,为了缓解因此导致的发动机性能下降,发动机性能退化缓解控制技术随之出现。推力估计和内环转速控制是该项技术的两个关键环节。本文巧妙地结合循环神经网络的特性,对这两个环节进行了深入研究。传统的基于模型的发动机推力估计存在耗时和耗内存两大问题,于是完全基于传感器测量数据的推力估计技术开始兴起。然而实际传感器数据会不可避免地夹杂噪声和异常值,这会对基于数据
涡桨发动机由发动机与螺旋桨两部分组成,桨发之间的匹配性能极大地影响着涡桨发动机的推进效率和经济性,同时也与涡桨动力飞机的安全性和可靠性密切相关,因此桨发匹配既是先进涡桨发动机设计和使用中的必然要求,也是当前涡桨发动机控制领域的研究热点。本文以双轴涡桨发动机为对象开展桨发匹配与控制规律的仿真研究,内容涉及发动机与螺旋桨的建模、桨发匹配控制计划研究以及转速控制器的设计。首先,本文开展了发动机建模研究。
三维正交机织复合材料作为三维纺织结构复合材料之一,凭借其质量轻、强度高的优点成为航空发动机风扇叶片潜在的应用材料。基于安全性的考虑,风扇叶片必须能够抵御鸟体的撞击,因此本文对此类新型材料的力学行为与抗鸟撞击性能进行了研究,主要展开了以下几个方面的研究工作:(1)进行了三维正交机织复合材料经向与纬向的准静态力学试验,获得了材料的准静态力学性能参数,发现准静态拉伸试验件的破坏区域均在工作段的中间部分,