论文部分内容阅读
球磨转速对CoCrFeMnNi高熵合金力学和耐蚀性能的影响
【机 构】
:
郑州大学
【发表日期】
:
2023年01期
其他文献
能源是人类赖以生存的物质基础。然而,随着社会的高速发展能源短缺问题越来越严峻。由于新能源的发展才刚刚进入正轨,社会的运行依旧以传统的不可再生能源为主,但对传统不可再生能源的大量使用造成了能源危机以及全球变暖。其中传统建筑物致冷以及汽车致冷占据能源消耗的很大一部分。因此,有必要寻找合适的致冷方式来缓解能源危机和全球变暖等问题。辐射致冷是一种热辐射过程,它是利用物体或结构在大气透明窗口(8~13μm)
学位
拓扑材料因此新奇的物理性质而引起人们广泛的研究,是凝聚态物理领域研究的热点之一。按照能带结构的不同,拓扑材料可以分为拓扑绝缘体、拓扑半金属,而拓扑半金属又可以分为狄拉克半金属、外尔半金属以及拓扑节线半金属,其中,狄拉克半金属的电子输运性质遵循狄拉克方程,其体态中存在具备线性色散关系的狄拉克锥,表面态为连接一对狄拉克锥的费米弧,表现出异于普通材料的非平庸物理性质,在自旋电子器件、量子计算机等方面具有
学位
2003年6月5日,世界环境日当天,浙江省启动“千村示范、万村整治”工程(以下简称“千万工程”),以农村生产、生活、生态三大环境改善为重点,选择1万个左右的建制村进行全面整治,把其中1000个左右的中心村建成全面小康示范村。这是习近平总书记在浙江省工作时亲自谋划、亲自部署、亲自推动的一项重大决策。党的十八大以来,习近平总书记站在引领中国“三农”发展的宏观高度,对浙江省实施“千万工程”多次作出批示。
期刊
进入新时代,党外知识分子工作开启了新篇章,以习近平同志为核心的党中央高度重视党外知识分子工作,特别是习近平总书记在各种重大场合围绕党外知识分子工作发表了一系列重要讲话,成为指导新时代党外知识分子工作的重要遵循。推动新时代党外知识分子工作与时俱进、创新发展,要强化理论学习和研究,掌握党外知识分子工作政策、把握党外知识分子群体特点,不断夯实党外知识分子工作实践创新的基础;要把握方针政策,明确党外知识分
期刊
近年来二维材料在材料种类、合成方法以及实际应用方面都取得了重大突破。其中,二维过渡金属硫属化合物(TMDs)作为二维材料中重要的一部分,在继承二维材料众多优点的同时还具有更多独特的优点,适用于构建高性能光电探测器。而在众多二维TMDs中,新兴的层状二维半金属TMDs不仅具有无带隙和非凡的光电特性带来的宽波段以及超快响应速度的优点,而且其线性电子色散和超薄层状结构可以增强光生载流子的产生,提高光电探
学位
近年来,随着中非合作论坛的召开及“一带一路”倡议的实施,中非关系逐渐成为国际社会关注的热点,而了解非洲本土媒体报道会对把握中非关系的构建产生重要的引导作用。本研究聚焦加纳、塞拉利昂、利比里亚三个西非国家,分析三国媒体构建的中非关系。研究选取2011年至2019年三国10家主流英文媒体有关中非关系的报道,使用数据驱动的文本分析方法,从报道频次、关注热点、情感态度三个方面对媒体构建的中非关系进行探讨。
学位
近年来,全无机CsPbI3钙钛矿太阳能电池的效率由最初的2.7%上升到了现在的21%。除了电池效率的快速提升外,无机钙钛矿电池所表现出优异的热稳定性和光稳定性也促使其成为了钙钛矿太阳能电池研究的热点。其中,CsPbI3具有立方相(α)、四方相(β)、正交相(γ)以及单斜非钙钛矿相(δ)四种不同晶体类型的相结构,其中α、β、γ相都属于黑色钙钛矿相。无机CsPbI3的α、β、γ相的带隙大约为1.7 e
学位
在软组织填充中,透明质酸填充剂注射可有效改善面部凹陷、皮肤静态皱纹和组织轮廓。而在皮肤层面,透明质酸可以治疗皮肤干燥,面部松弛,口周皱纹。微交联透明质酸水光注射适合减轻浅表细纹(包括眶周、前额、木偶纹和微笑纹)以及改善面部松弛。本文对微交联透明质酸的特点、有效性及安全性、禁忌证、适应证、术中操作、注意事项、并发症、联合应用等多方面探究解析,为使用微交联透明质酸在临床上规范化提供参考,以期获得更好的
期刊
碳点作为一种新型的发光碳纳米材料,因其发光波长可调、生物相容性好、稳定性高、生物毒性低等特点,使其在光电器件、生物成像、照明显示、信息加密等方面有着广泛的应用。然而,在紫外/可见光激发下,碳点除了荧光特性之外还有磷光特性,这使得它们成为一类具有广泛应用前景的发光纳米材料。与荧光材料不同,磷光材料具有长的发光寿命、大的斯托克斯位移、无背景荧光干扰,而且对环境的高灵敏度使它们非常适合于各种不同的应用,
学位
作为一种新型结构材料,多主元高熵合金(HEA)自提出以来就得到了国际上的广泛关注。近年来国际上逐渐达成共识,尽管HEA性能优异,但替代传统结构材料可能性较小。而开发一些特定领域,如高温、耐蚀等,应用的HEA更为现实,因而高熵合金及其复合材料的高温性能得到了较高重视。作为最具代表的HEA之一,等原子比CoCrFeMnNi因兼具良好塑性与强度而得到广泛研究,可以当作理想的复合材料的基体。CoCrFeM
学位