论文部分内容阅读
随着激光二极管泵浦的全固态激光技术的成熟,全固态激光器已经成为光学领域的一个重要的研究方向,本文对全固态激光器及非线性频率变换技术做了深入研究,研究内容包括全固态紫外激光器、全固态黄光激光器、全固态参量振荡器以及热助推泵浦技术,文中给出了一些新的结构及概念。主要内容及创新点如下:1全固355nm态紫外激光器利用激光晶体自身的热透镜效应来对基频光进行聚焦,在未采用额外的聚焦系统情况下,实现了高效紧凑的腔外非线性频率变换紫外355nm激光器,当注入的泵浦功率28W,调制频率10kHz时,获得了1.65W的355nm紫外激光输出,单脉冲能量165μJ,脉宽6ns,峰值功率27.5kW,对应1064nm到355nm的光光转换率20.4%,为了获得更高的光光转换率,我们提出了一种二次和频技术,使一次和频剩余的1064nm和532nm激光再次被聚焦到和频晶体中进行二次和频,从而提高了光光转换效率,当泵浦功率25W时,获得了2.7W的355nm紫外激光输出,1064nm到355nm的光光转换率为43.5%,为了进一步提高1064nm到355nm的光光转换效率,我们利用反射式聚焦技术将1064nm激光和532nm激光聚焦到两块非线性频率变换频晶体中,这种聚焦方式消除了由于透射式聚焦带来的色散效应,将光光转换率进一步提高到了47.4%。2全固态266nm紫外激光器对腔外非线性频率变换的266nm紫外激光器进行了研究,为了使激光器更加紧凑采用短光纤耦合,短腔结构,在泵浦功率为25W时,获得了0.85W的紫外266nm激光输出,脉冲宽度6ns,1064nm到266nm的光光为13.7%。对LD侧泵紫外激光器进行了研究,为了改善光束质量提高光光转换效率,采用了Z型腔结构,当泵浦功率19A,调制频率5kHz时,获得了16W的532nm激光输出,光束质量因子为5,利用BBO晶体进行腔外四倍频,最终获得了2.1W的266nm紫外激光输出,1064nm到266nm的光光转换率为13.13%。3全固态黄光激光器提出了一种全新的LD泵浦共轴双晶体结构,当泵浦功率为1.5W时,获得了54mW的589nm黄光激光输出,光光转换率3.6%,激光的长期不稳定度约为5%,采用传统方式在相同的条件下只获得了15mW的黄光激光输出,这种LD泵浦的共轴双晶体结构具有结构紧凑、灵活的特点,可以广泛用于许多和频激光器中。4全固态连续波可调谐人眼安全波段及中红外激光器对温度和周期调谐曲线进行了计算,实验中获得了14011513nm的连续波人眼安全波段以及3.664.22μm的中红外闲频光输出,与理论曲线吻合的很好,当泵浦功率17.1W,最大获得了2.21W的1500nm激光输出,对应的光光转换率12.9%,在相同条件下可获得960mW的3.66μm的中红外闲频光输出,对应光光转换率5.6%.5热助推泵浦技术的研究利用914nm热助推泵浦Nd:YVO4晶体获得了1064nm激光输出,为了克服这种泵浦方式对泵浦光吸收率较低的缺点,采用了增加晶体温度、提高晶体的掺杂浓度以及增加晶体的长度三种方式,并且对以上三种方式进行了实验比较,实验表明利用长晶体和适当的提高晶体的掺杂浓度是能够有效提高转换率的方法,实验中采用1%掺杂10mm长的Nd:YVO4晶体,当热沉温度为50℃的情况下,吸收了2.87W的914nm泵浦光,获得了2.27W的1064nm激光输出,光光转换率为79.9%,同时,还开展了热助推泵浦的1342nm激光器的研究,利用1%掺杂8mm长的Nd:YVO4晶体,吸收1.82W的914nm泵浦光获得了0.86W的1342nm激光输出,对应的斜率效率65.4%,在此基础上,进行了880nm热助推泵浦的Nd:YVO4自受激Raman散射实验,实验表明相比于808nm泵浦的情况,880nm热助推泵浦能够明显的降低晶体的热,从而提高受激Raman散射的光光转换效率。