【摘 要】
:
新能源发展迅速,带动了储能技术的发展。由于单一电化学储能无法同时兼顾功率密度、能量密度两方面需求,因此,多种电化学储能结合而形成的混合储能系统具有更全面的性能。在电化学混合储能系统中,根据不同的储能特性进行功率分配可以延长系统寿命,但是各储能介质的能量状态严重失衡会引起功率分配控制的失效,而能量均衡技术通过对储能系统内部能量流动进行动态调整,以保证各储能介质的剩余能量处于平衡状态,从而有效地进行功
论文部分内容阅读
新能源发展迅速,带动了储能技术的发展。由于单一电化学储能无法同时兼顾功率密度、能量密度两方面需求,因此,多种电化学储能结合而形成的混合储能系统具有更全面的性能。在电化学混合储能系统中,根据不同的储能特性进行功率分配可以延长系统寿命,但是各储能介质的能量状态严重失衡会引起功率分配控制的失效,而能量均衡技术通过对储能系统内部能量流动进行动态调整,以保证各储能介质的剩余能量处于平衡状态,从而有效地进行功率分配。论文总结了国内外混合储能系统的研究现状,对比分析了各个混合储能系统的优缺点,详细分析了功率分配控制方法、能量均衡技术。论文基于分布式控制结构的混合储能系统,提出了完整的功率分配和能量均衡控制实现方案,搭建实验样机验证了该方案的有效性。论文采用超级电容-电池混合储能系统结构,主要研究工作如下:(1)针对高频功率流经电池会缩短其寿命的问题,论文提出了基于高通滤波器和低通滤波器的下垂控制方法,将超级电容对应的变换器输出阻抗校正为低通滤波器形式,同时将电池组对应的变换器输出阻抗校正为高通滤波器形式。从而实现超级电容处理高频功率而电池组处理低频功率的控制效果。(2)各储能单元剩余能量的不一致性会带来可利用容量下降、系统整体寿命下降、内阻增大等问题。针对上述问题,论文引入基于模型预测控制的均衡技术,提出在模型预测控制中加入超级电容的荷电状态(SOC)作为控制目标,由此构成基于能量传输效率-均衡时间-超级电容SOC的代价函数。在动态均衡过程中,将超级电容的SOC保持在一定范围,确保超级电容持续稳定工作,同时实现了电池组的剩余能量一致性。(3)搭建了由七节电池和超级电容构成的混合储能系统实验样机,验证了在负载切换情况下的功率分配控制、能量均衡实验效果。结果表明,基于分布式控制结构的混合储能系统,在负载扰动情况下满足快速、高效、可持续性的要求。
其他文献
随着旋转设备的不断发展,大量特殊领域如雷达供电、风力发电、航空航天、石油钻探等,对旋转设备提出了更高的要求。旋转设备由静止和旋转两部分组成,工作过程中供电端与用电端存在相对转动,需要旋转机构衔接静止和旋转部分。因此,旋转机构成为旋转设备的重要研究方向。传统旋转设备采用接触式滑环进行电能传输,由于静止部分和旋转部分之间物理连接,存在易磨损、易打火、事故率高、更换成本高等缺点,阻碍了旋转设备的发展。无
为满足快速增长的电力需求,微电网这一灵活、高效、清洁的小型供电系统受到了人们的广泛关注。但新能源发电出力的间歇性、波动性以及负载需求的随机性也给微电网的稳定运行带来了新的挑战,针对以上问题本文提出一种双层控制结构的微电网有功功率动态调度与控制策略,上层动态经济调度算法实现发电单元最优参考值的计算,下层控制策略实现发电单元的输出功率跟踪最优参考值。针对微电网动态经济调度问题,结合预测校正内点法和拉格
电机在工业化进程中有着举足轻重的地位,而电机轴承作为一个故障多发的零部件,损坏时很容易带来经济损失和人员伤亡等问题,传统的电机轴承故障诊断方法对从业人员的专业知识和经验要求较高,对复杂设备进行故障诊断的难度较大。近年来,基于深度学习的电机轴承故障诊断方法得到了学术界和工业界的广泛关注,但由于现实工况多变、电机轴承参数不同、故障样本较少等原因,基于深度学习的故障诊断模型面临着应用过程中识别准确率下降
随着计算机硬件与算法的发展不断取得新的突破,自动驾驶汽车的落地也离我们越来越近,未来自动驾驶与人工驾驶不可避免的混合将会给我们现有的道路基础设施带来新的问题与挑战。路段阻抗函数能很好地反映路段出行成本与流量的变化关系,同时也是交通分配的基础,但是在自动驾驶车辆与传统人工驾驶车辆组成的混合交通中,以往的路段阻抗函数未能考虑混合交通流中的自动驾驶车辆渗透率与专用车道等因素对道路通行能力的影响,难以准确
对汽车周围一定距离下的环境感知是自动驾驶汽车实现路径规划的基础。自动驾驶汽车大部分依赖于激光雷达、摄像头和毫米波雷达融合的得到的结果,以实现高传感器冗余,高可靠性的,高安全性的目标。鉴于相机的低成本,感知信息丰富,基于单个图像实现准确的目标三维信息估计变得越来越重要,而现在3D目标检测在被遮挡或者截断场景难以准确的估计目标的三维信息。本文基于自动驾驶场景下的单目3D目标检测算法进行了深入研究,做出
随着磁耦合无线电能传输(Magnetic Coupled Wireless Power Transfer,MC-WPT)技术的进步和发展,该技术开始在各种轻量化、小型化的现代用电设备中广泛应用。但是中小功率无线供电系统通常没有拦截装置,当区域内存在异物时,系统输出功率和效率存在跌落的风险,部分金属甚至会因严重发热导致安全隐患。所以随着无线供电技术在中小功率系统中的推广和应用,异物检测技术也越来越受
快速路移动瓶颈是一种常见的交通瓶颈。相关研究表明:移动瓶颈的存在会对道路的运行效率产生负面影响,而移动瓶颈的随机性和移动性增大了控制的难度。随着智能汽车技术的发展,出现了网联自动车(Connected Automatic Vehicles,CAVs)与网联人驾车(Connected Human Vehicles,CHVs)构成的异质交通流。网联自动车的加入增加了交通系统的复杂度,但同时也为解决交通
在使用汉川XK714D数控铣床加工产品的过程中,传统PID控制的伺服进给系统受到滚珠丝杠侧的切削力、摩擦力等非线性因素影响,降低了控制系统的动态特性和鲁棒性,导致了实际输出与控制指令间存在偏差。针对此问题,本文创新性的将永磁同步电机与滚珠丝杠组合而成的伺服进给系统作为整体进行研究,借用自抗扰理论中扩张观测器能观测伺服进给系统的总扰动,非线性误差反馈控制率能消除伺服进给系统的总误差思想,设计了转速电
为了解决移动用电设备以及特殊环境下用电设备的供电灵活性、安全性等问题,磁耦合无线电能传输技术(Magnetic Coupling Wireless Power Transfer,MC-WPT)被广泛研究,也给电动汽车提供了一个更加便捷和安全的充电方式。为了实现高效的无线充电,电动汽车动态无线充电(Electrical Vehicle Dynamic Wireless Charging,EVDWC)
对于工业生产来说,针对无人值守时的气体泄漏、隐蔽烟火隐患检测技术是保障工业安全生产的重要一环。尽管现有检测方法在检测精度上已经有较高水准,但面临视频流检测和现场设备性能有限带来的算力压力以及环境适应性差等问题,使现有检测方法无法同时满足准确性和实时性需求。Yolo系列目标检测模型拥有检测精度高、不易过拟合等优点。本课题重点研究了工厂园区场景下基于YoloV4框架的轻量化烟雾检测模型改进方案以及结合