论文部分内容阅读
随着电子商务的不断发展,网购用户规模日益增长,越来越多的学者投入到对电商平台的推荐算法研究。虽然取得了一定的成果,但仍有一些遗留问题亟需解决,如数据稀疏性、冷启动、推荐精度低等。本文首先阐述了本课题的研究意义和推荐系统的国内外研究现状,并对常用的推荐算法的理论基础、算法流程进行了详细的阐述,并分析其优缺点,总结目前技术存在的缺陷,同时还阐述了推荐算法的常用评测指标。为下文中改进算法提供理论基础。针对传统协同过滤推荐算法冷启动问题,本文提出一种基于标签权值的改进推荐算法。首先建立用户-商品-标签矩阵,对标签进行量化,构建新的用户喜好模型,引入标签权重的概念,引入词频-逆文档频率(TF-IDF)算法计算不同用户的标签权重,根据标签权重建立新的相似度计算方法。对相似度计算公式里的调节因子和用户近邻集合k的不同取值进行实验分析,最终得到推荐结果最精确时的最佳取值;并且将本文提出的算法与其他算法实验对比,根据实验结果得出本章提出的算法能得到更好的近邻集合,从而使得推荐结果更准确,并一定程度上缓解了冷启动问题。针对用户评分矩阵中的矩阵分解算法进行研究,本文提出一种基于社交好友关系的奇异值分解模型。将Funk-SVD(Singular Value Decomposition)算法与用户的社交信息相结合,引入好友的喜好信息结合用户自身的喜好信息优化Funk-SVD模型,用随机梯度下降法分解矩阵,最后进行仿真实验。实验结果表明,本文提出的一种社交好友关系的奇异值分解模型一方面能够在一定程度上改善数据稀疏性问题,同时相比传统的SVD算法推荐的精度有所提高。最后,本文融合提出的两种推荐算法构建了一个电商平台的个性化推荐系统。根据系统的功能需求进行了主要功能模块的详细设计,随后采用模块化设计方法,分别介绍了推荐系统各个功能模块的详细功能和实现。该推荐系统证明了本文提出两种推荐算法的实用性。