【摘 要】
:
铝合金型材具有低密度、高强度和易回收等特点,在交通运输、航空航天、建筑、电器等领域应用广泛。针对具有高精度、大壁厚差、复杂断面等特征的异型铝合金型材挤压成形,存在模具易疲劳失效、产品报废率高等问题。本文以异型铝合金型材为研究对象,以模具的寿命和型材的成形质量为目标,深入研究6082铝合金材料的高温流变行为和热加工性能、分流桥和模具结构的优化设计、关键挤压成形工艺参数的优化等关键问题。具体研究内容如
【基金项目】
:
中央引导地方科技发展专项(2018L3001); 福州市科技计划(2020-PT-145);
论文部分内容阅读
铝合金型材具有低密度、高强度和易回收等特点,在交通运输、航空航天、建筑、电器等领域应用广泛。针对具有高精度、大壁厚差、复杂断面等特征的异型铝合金型材挤压成形,存在模具易疲劳失效、产品报废率高等问题。本文以异型铝合金型材为研究对象,以模具的寿命和型材的成形质量为目标,深入研究6082铝合金材料的高温流变行为和热加工性能、分流桥和模具结构的优化设计、关键挤压成形工艺参数的优化等关键问题。具体研究内容如下:(1)研究了6082铝合金的高温流变行为,建立了本构模型和热加工图。通过单向热压缩实验,得到了6082铝合金高温应力应变曲线。结果表明,流变应力与应变速率成正相关,与变形温度成负相关;建立的Modified Johnson-Cook、应变补偿Arrhenius、改进应变补偿Arrhenius和Hensel-Spittel本构模型的相关系数和平均绝对误差分别为0.967、0.981、0.995、0.987和12.64%、4.759%、3.222%、4.57%;6082铝合金的安全热加工范围为变形温度450~475℃,应变速率0.01~0.1 s-1以及变形温度500~550℃,应变速率0.1~0.3 s-1。(2)采用主应力法研究了矩形分流桥、锥形分流桥和曲面形分流桥分离金属材料过程所受的力,并进行了数值模拟分析验证。结果表明,与矩形分流桥相比,曲面分流桥挤压模所需的挤压力降低5.39%,型材出口速度均方差降为0.308 mm/s,焊缝区的焊合压力增大到182.13~221.78 MPa,提高了焊缝区的焊合质量。(3)以异型铝合金型材为研究对象,设计并优化了模具。以型材出口流速均方差为优化目标,研究了焊合室、阻流块、工作带等模具结构优化对金属材料流速的影响规律。结果表明,模具结构优化后,型材出口速度均方差降至1.71mm/s,模具的最大应力为676.14 MPa,模具最大变形量出现Z轴方向,数值为0.39 mm。(4)以型材出口速度均方差和挤压力为优化目标,建立了多目标优化模型,优化了异型铝合金型材挤压成形的关键工艺参数。研究结果表明,最佳挤压工艺参数组合:坯料温度为500℃,模具温度为480℃,挤压筒温度为430℃,挤压速度为1 mm/s。在最佳工艺参数条件下,型材出口流度均方差为0.446 mm/s,模具所受的最大应力为603.94 MPa,低于模具材料的屈服强度1020 MPa,保证了模具的使用寿命。
其他文献
微型马达是一种能够将外部能量(光、声、磁、电、化学能等)转化为动能,实现自主运动且尺寸为微纳米量级的粒子或结构。随着科学技术的发展,科学家们在微纳米材料的合成技术上不停地探索,微型马达在结构构筑、驱动方式、行为调控和速度等方面得到了快速的发展。这使得微型马达在生物医药、环境治理等方面有着巨大的应用潜力。本文主要以碳微球(CMS)为模板,制备了二氧化钛(TiO2)光驱动微型马达,在对其形貌、组成和结
超高强铝合金(7000系列Al-Zn-Mg-Cu合金)由于其晶界腐蚀抗力明显不足,在航空航天领域的应用受到一定限制。本文以晶界腐蚀行为主体,即晶界本身为切入点,关注晶界的结构与特性,采用基于电子背散射衍射和五参数分析的晶界界面匹配定量表征方法和高分辨透射电子显微镜等先进手段,研究了形变及再结晶对7A85铝合金{1 1 1}/{1 1 1}近奇异晶界的影响,解析此类晶界的结构特征,为进一步控制此类晶
为了满足热界面材料(TIMs)领域的应用要求,制备高导热且绝缘复合材料尤为重要。填料的添加量及其排列对复合材料导热性能起着决定性作用。为了降低填料添加量,加入第二相填料,利用不同填料间的空间位置协同作用,制备高热导率复合材料。本论文选用高热导率且绝缘的氮化硼(BN)为主要导热填料,氧化锌(ZnO)、氧化镁(MgO)为第二相填料,基于冰模板法的原位烧结法制备取向三维(3D)导热网络,辅助真空浸渍聚二
2004年高熵合金(HEA)的问世开辟了金属材料研究的一个崭新领域,因其独特的成分和优异的性能成为研究的热点。新近发展的共晶型高熵合金兼具了共晶合金优异的铸造性能,以及高熵合金的高强度和高延展性,得到了人们的广泛关注。本文通过放电等离子烧结(SPS)气雾化AlCoCrFeNi2.1共晶高熵合金(EHEA)粉末制备了块体合金,研究了烧结工艺参数-组织结构-性能的相互关系,并在此基础上添加C和Al元素
近年来,随着石油化工行业的迅猛发展,引发的油污染越来越严重,对生态环境和人类健康造成了极大威胁。与传统二维分离材料相比,三维多孔泡沫材料具有较大比表面积、较高孔隙率、良好的内部连通性等优点,使油污较易吸收、存储、运输,因此用于快速、连续、大容量地原位油水吸附分离材料已引起了越来越多的关注。本文通过真空溶液浇注/粒子沥滤技术制备了聚氨酯/醋酸纤维素(TPU/CA)三维多孔复合泡沫,并通过脱乙酰化表面
环氧树脂(EP)因其具有优异的力学性能、耐化学性和黏附性等,而被广泛应用于涂层、胶黏剂、复合材料、层压板、封装等领域。但是,由于其本身由碳氢链组成,在燃烧过程中会释放出大量的热量和有毒烟雾,对人们的生命安全造成严重威胁。基于此,本论文制备三种磷氮基(P/N基)阻燃剂,用于提升EP的火灾安全性能。主要研究内容如下:(1)应用酰氯反应合成了磷的氧化态为+5价的磷氮基阻燃剂二苯基烯丙基磷酰胺(DPCA)
近年来,热塑性聚酰胺弹性体(TPAEs)发泡材料克服了其它弹性体发泡材料如乙烯-醋酸乙烯酯共聚物(EVA)耐久性差、热塑性聚氨酯弹性体(TPU)密度高等缺点,在鞋类行业中的应用受到了广泛的关注。目前鞋类发泡材料中流行的TPAEs是聚酰胺12(PA12)系TPAEs,然而其价格昂贵,通常应用于高端鞋类。在TPAEs中,热塑性聚酰胺6弹性体(PA6系TPAEs)原料来源广泛、价格低廉、性能优异,在鞋类
导卫装置是轧钢生产线上的重要组成部分,对钢材的生产效率和质量影响极大,但现有的导卫材料易断裂或高温耐磨性差,难以满足高温高速摩擦环境下的使用需求。本课题以掺杂微量碳氮化钛(Titanium carbonitride,TiCN)颗粒和氧化石墨烯(Graphene oxide,GO)粉末,采用等离子烧结(Spark plasma sintering,SPS)技术制备出rGO/TiCN-W-Cu复合材料
微型马达是尺度在微米级别,可将外界的能量转化为自身驱动力的微观器件。因体积微小、可通过多种方式来控制其运动,近年来引起了国内外学者的研究兴趣并广泛应用于生物、医学及环境处理等领域。其中,光驱动马达由于具有可控性高、可编程性好和操作简单等优点而倍受关注。但是目前光驱动微型马达的制备过程繁琐、价格成本高,限制了其实际应用。因此,本课题主要采用湿化学法制备基于g-C3N4的微型马达,在对其形貌、组成和结
{1 1 1}/{1 1 1}近奇异晶界比一般晶界更耐蚀,提高此类晶界比例是显著改善铝及其合金晶界腐蚀性能的一个重要途径。为了掌握铝及其合金在形变及再结晶组织重构过程中生成{1 1 1}/{1 1 1}近奇异晶界的本征行为。本文选用高纯铝作为研究对象,利用基于五参数分析的晶界界面匹配定量表征方法,测定了组织均匀化样品的晶界特征分布,研究了轧制变形和再结晶以及晶粒长大对{1 1 1}/{1 1 1}