【摘 要】
:
随着计算机视觉技术飞速提升再加之社会各界大力发展,基于深度学习的行人检测与跟踪技术愈来愈受到国内外专家的科研重视,各国科研所与科技公司都对此展开了着力研究。人们对于安全与隐私意识也愈发提高,对于室内监控则变得越来越重视并在教学楼,火车站,候机楼等各种场合都有着视频进行记录,用监控学生或员工的安全问题;同时也可以在室内某些恶劣情况发生时检测人们的轨迹检测并记录下来,及时发现情况将人身和经济损失降低;
论文部分内容阅读
随着计算机视觉技术飞速提升再加之社会各界大力发展,基于深度学习的行人检测与跟踪技术愈来愈受到国内外专家的科研重视,各国科研所与科技公司都对此展开了着力研究。人们对于安全与隐私意识也愈发提高,对于室内监控则变得越来越重视并在教学楼,火车站,候机楼等各种场合都有着视频进行记录,用监控学生或员工的安全问题;同时也可以在室内某些恶劣情况发生时检测人们的轨迹检测并记录下来,及时发现情况将人身和经济损失降低;室内场景与人类生活息息相关,室内场景的检测与跟踪技术可以为人们的生活、工作等多个方面做出巨大贡献。这些科技的进步与视频设备的实际应用极大的推动了行人检测与跟踪技术的发展。传统的目标检测使用的都是基于anchor的检测算法,但是由于室内目标的形状和位置是不可确定的且常出现遮挡等情形,所以易导致anchor的数量和形状会产生多种情况。anchor数量的增多就会造成运算量的增加从而让检测的速度减慢,并且使用anchor的检测算法在特征提取方面表现的并不好。基于以上问题,本文选用了一种基于角点信息而非anchor的方法来进行行人检测。与依赖检测框四条边才可确定目标位置不同的是,基于角点的方法仅依赖于物体的两条边,便可确认一个点,这样依靠角点的检测就会显得更加容易。选取该方法进行人物检测,可减少在检测和特征提取时受到anchor的干扰,这样检测速度和精度也会相应的提高。而且传统的检测与跟踪系统由于在特征提取和检测跟踪阶段采用多网络分步进行的方式,这样就会导致检测与跟踪的时间较长。针对这一问题,本文提出了一种方式将行人检测与特征提取共同放置于同一网络体系让两者并行运行,这样两者的特征图就会共享,这会大大的缩短了检测与追踪所使用的时间,将行人检测的输出结果作为追踪的输入,从而形成了一套从检测到追踪的系统。行人跟踪首先对行人的位置进行预测,然后对目标进行ID与轨迹匹配。虽然效果不错,但是行人ID切换的问题经常出现,尤其是当视频内行人出现交错重合等场景时愈发明显。所以需要结合行人重识别技术对行人跟踪过程中出现的问题进行一些校错纠正,经过实验分析结果可得知,结合了行人重识别技术后,行人跟踪算法的效果相较于之前有了一定的改善。
其他文献
凭借不断更新的无线网络技术、卓越的智能设备和持续革命性的计算能力,物联网在生产生活的各个领域得到了广泛的应用,为我们带来便捷的服务和巨大的价值的同时,由于其数量的指数增长和种类的复杂多样,面临着数据的安全性和隐私性的挑战。可信认证技术是物联网设备进入物联网系统的第一道屏障,因此,如何做到可信认证是保护数据安全和隐私的关键所在。近些年可信赖的区块链技术因其具有防篡改、去中心、可溯源的优势,被持续深入
本文主要针对空战中在强干扰环境下对目标的识别与跟踪算法进行研究。敌方战斗机为了躲避我方导弹的识别与跟踪,会人为地释放干扰弹,产生强干扰。强干扰会严重影响红外制导、激光制导以及雷达制导等对目标的识别与跟踪,甚至有可能会导致丢失目标。本文对可见光图像的战斗机识别与跟踪算法进行研究。主要分析了目前应用最广泛的统一的实时目标检测第五版(YOLO v5)目标识别算法和高效卷积算子(ECO)目标跟踪算法,并进
随着计算机图像处理、5G移动通信等技术的不断发展,模拟训练系统被应用到越来越多领域。通过在模拟训练系统中对现实复杂交通现象进行仿真,能够排除空间、时间、天气等诸多限制因素的影响,提供可持续的训练与研究,具有一定的研究意义与应用价值。本文基于模块化的思想,分析运动车辆精确定位模拟训练的需求,将系统整体结构进行了实现,主要研究内容包括:(1)阐述了多种无线定位方式,并按照基站铺设、定位误差、适用程度三
一直以来,由于我国边境条件复杂,单一传感器的识别效果有限,且非常容易受到气候、能见度、人为伪装等多种因素的影响,导致识别效果不佳。本文主要研究了一种在复杂背景下将不同类别的传感器组合成簇的方法,能够协同、动态的对入侵目标进行跟踪识别。多传感器协同探测不仅增加了信息的互补,提高了识别准确率,还提高了系统的鲁棒性,实现了对目标的全方位识别探测。本文主要研究内容如下。(1)在复杂环境的复杂背景下,对通信
在组织病理学图像分析中,细胞核的分割对癌症的临床分析诊断有着重要的作用,将细胞核精确的分割出来可以为肿瘤分级奠定良好的基础。但是由于细胞存在不同的形态,染色的不均匀以及大量密集的核团的存在,精确的分割出细胞核仍具有挑战。近年来,深度学习已经广泛的被应用到病理图像细胞核分割中,因为它能够自动在图像数据中获取重要信息。为了更好的使深度学习神经网络在训练过程中能学习到更多具体的关键的特征信息,本文对国内
随着现代化的逐步推进,计算机、图形图像、硬件交互等技术已经成了生活学习中不可或缺的关键部分。虚拟现实技术作为一种新型的计算机技术,因其沉浸式和交互式等特性,正在潜移默化的改变我们的日常生活,也在各行各业产生了深远影响。在工业装配领域,传统装配方式需要消耗大量空间成本、时间成本、人力成本等,但是把虚拟现实技术与工业装配相结合,可以将真实的装配过程转变为在虚拟环境下的装配,解决传统装配技术带来的各个方
人体动作识别作为计算机视觉领域的关键技术之一,对现代社会的发展进步起到至关重要的作用。如何在不受复杂环境和目标个体差异的影响下提高机器识别人体动作的准确度,并使其快速准确的理解人所表达的动作信息是目前各大领域研究者们关注的重点。由微软发布的Kinect设备可采集三种不同类别的数据,其中深度数据和骨骼数据只取决于目标的空间位置,具有颜色无关性,动作识别受外界因素的干扰较小,为人体动作识别技术的研究提
随着科技的不断进步,相关电子元器件的制造产业取得了高速发展,自动检测电子元器件产品质量也成为了电子元器件生产的现实需要。在自动检测领域中,“检测精度”与“检测速度”是两个十分重要的检测的指标。本文根据工业生产环境中对检测精度和速度的不同需求,提出以下两种需求目标:(一)允许少量精度损失的情况下以高速度为目标;(二)以较高精度的电子元器件表面缺陷检测为目标。针对这两种需求目标,本文分别设计了两种基于
交通运输是一个城市的经济命脉,城市交通系统是一个复杂、庞大的系统,具有不确定性、多变性、随机性。随着城市车辆数量的不断增加,传统的交通信号配时方案无法应对,无论国内外,每年因交通拥堵造成的多方面损失都是巨大的。而智能交通信号配时技术的出现,突破了传统交通信号配时的危机和瓶颈。近些年来,随着智能技术的发展,基于深度强化学习(DQN)的交通信号配时技术成为智能交通信号配时中的主流。基于DQN的交通信号