论文部分内容阅读
激光散斑普遍存在于光学成像的过程中。在传统的相干光学中,散斑往往被认为是光学系统中的噪声。因为散斑的存在限制了光学成像系统从图像中提取信息的能力,削弱了观察者从相干图像中提取细节的能力。激光散斑在成像中作为噪声需要被抑制,然而在计量领域却是非常有用的。激光散斑起源于其对物体表面运动的敏感性,包含着丰富的图像信息,可以看作是信息的载体,这就使得散斑的随机强度分布作为与物体表面局部变化相关信息的载体的技术非常迅速的发展起来,为相干光学中散斑计量学的建立奠定了基础。在随机激光散斑场中存在着大量的涡旋,而随机散斑场中的这些光学涡旋往往被称为“散斑涡旋”。激光散斑中存在的相位涡旋包含着丰富的散斑场相位信息,决定了散斑场的分布。因此,激光散斑场中最常见的研究往往是与散斑涡旋有关的。从基础物理和应用物理的角度来看,对散斑涡旋的研究是非常重要的。散斑涡旋是光学涡旋中最为复杂和最具代表性的一种,在光学奇异的研究中具有引领作用,在光学微操纵、超分辨成像、光学信息存储与传输、生命科学等众多领域也得到了重要而广泛的应用。本论文对涡旋光和激光散斑的产生机理及其应用进行了研究,主要研究内容和结论如下:利用光学涡旋的微测量技术研究概述。介绍了应用光学涡旋进行微测量的光学涡旋干涉仪(Optical Vortex Interferometer,OVI)和光学涡旋干涉计量术(Optical Vortex Metrology,OVM)。OVI是基于三束平面光波干涉所产生的涡旋点阵进行微测量的;由于涡旋点的位置是稳定的,这非常有利于涡旋点的精确定位,且不需要提取极大或极小干涉条纹的信息,就可以对涡旋点进行追踪。OVM是通过观测散斑图样中伪相位奇点的行为进行微测量;OVM是基于相位奇点可以给出精确的几何位置这一众所周知的事实,该几何位置具有独特的核心结构和空间分布,这可以看作是这些几何点的“指纹”,这些指纹赋予了相位奇点有价值的信息,而使之成为可辨认的最佳标识。物体的位移就可以通过相位奇点位置的变化得出。利用阿基米德螺旋微孔阵列产生散斑涡旋的研究。在随机散斑场中存在的光学涡旋包含了丰富的相位信息。这些光学涡旋也就是散斑涡旋,决定了散斑场的分布。散斑涡旋可以由随机散射点(相当于螺旋微孔)产生。为了对散斑涡旋的产生进行定量的分析,建立了基于阿基米德螺旋线规律排列的微孔阵列产生散斑涡旋的理论模型。在实验中,设计好的阿基米德螺旋微孔阵列输入到液晶空间光调制器上,由CCD捕获输出光场。数值模拟和实验结果表明,按阿基米德螺旋线规律排列的微孔阵列可以产生散斑涡旋。利用平滑光子筛产生光学涡旋的研究。作为一种新型衍射光学器件,光子筛具有良好的衍射特性。基于液晶空间光调制器,设计了一个应用平滑光子筛产生光学涡旋并验证光子筛聚焦特性的实验方案。所使用的光子筛是利用高斯窗口函数进行平滑处理的。数值模拟和实验结果验证了光子筛的聚焦特性。实验结果还表明,光子筛可以产生光学涡旋;光学涡旋的存在是由叉形光栅的形成证实的。基于光学涡旋相移技术的变形测量研究。设计了基于光学涡旋相移技术的离面位移和面内位移测量实验方案,实现了电子散斑干涉中相移的数字控制。该方法利用输入到液晶空间光调制器中的叉形光栅产生涡旋光束,通过涡旋光束绕轴的旋转产生相移。同时,产生的涡旋光束又作为参考光与物光干涉。实验中,在物体发生微位移前后依次输入四幅叉形光栅,产生相移步长为π/2的涡旋光束,利用CCD获得涡旋光与物光的干涉光场,从而获得离面位移和面内位移的包裹相位。再通过解包裹,获得了物体变形的相位变化和位移。泰伯效应应用于电子散斑测量的研究。利用传统的散斑实验光路,设计了一个利用泰伯效应进行位移测量的实验方案。在实验中,把二维光栅的计算全息图输入到液晶空间光调制器,通过衍射光栅的衍射光再投射到置于某个泰伯平面处的物体表面,在物体表面形成清晰的泰伯图像,利用CCD记录物体表面的衍射图样。物体变形的信息包含在输出光场的强度图样之中。利用数字散斑相关测量算法求得物体的平动位移和面内位移。模拟和实验结果表明,泰伯效应应用于电子散斑干涉测量的实验方案是可行的。把泰伯效应应用到电子散斑干涉测量之中,既为变形测量提供了一个可供选择的新实验方案,还拓展了泰伯效应的应用范围。